<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    人在江湖

      BlogJava :: 首頁 :: 聯(lián)系 :: 聚合  :: 管理
      82 Posts :: 10 Stories :: 169 Comments :: 0 Trackbacks

    Kendall tau是用來度量關(guān)聯(lián)關(guān)系的。

    (引自wikipedia:http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient)

    ==============================================

    Let (x1, y1), (x2, y2), …, (xn, yn) be a set of joint observations from two random variables X and Y respectively, such that all the values of (xi) and (yi) are unique. Any pair of observations (xi, yi) and (xj, yj) are said to be concordant if the ranks for both elements agree: that is, if both xi > xj and yi > yj or if both xi < xj and yi < yj. They are said to be discordant, if xi > xj and yi < yj or if xi < xj and yi > yj. If xi = xj or yi = yj, the pair is neither concordant nor discordant.

    The Kendall τ coefficient is defined as:

    \tau = \frac{(\text{number of concordant pairs}) - (\text{number of discordant pairs})}{\frac{1}{2} n (n-1) } .

    =========================================================

    同一篇文章繼續(xù)引用關(guān)于ties:

    =========================================================

    A pair {(xi, yi), (xj, yj)} is said to be tied if xi = xj or yi = yj; a tied pair is neither concordant nor discordant. When tied pairs arise in the data, the coefficient may be modified in a number of ways to keep it in the range [-1, 1]:

    Tau-b statistic, unlike tau-a, makes adjustments for ties and is suitable for square tables. Values of tau-b range from ?1 (100% negative association, or perfect inversion) to +1 (100% positive association, or perfect agreement). A value of zero indicates the absence of association.

    The Kendall tau-b coefficient is defined as:

    \tau_B = \frac{n_c-n_d}{\sqrt{(n_0-n_1)(n_0-n_2)}}

    where

    \begin{array}{ccl}
n_0 & = & n(n-1)/2\\
n_1 & = & \sum_i t_i (t_i-1)/2 \\
n_2 & = & \sum_j u_j (u_j-1)/2 \\
t_i & = & \mbox{Number of tied values in the } i^{th} \mbox{ group of ties for the first quantity} \\
u_j & = & \mbox{Number of tied values in the } j^{th} \mbox{ group of ties for the second quantity}
\end{array}

    ================================================

    靠,搞了半天才理解,上面公式中所謂nc, nd里面的c和d,指的是concordant和discordant.

    在sas中計算Kendall tau-2比較簡單,直接用proc freq就行,原來proc freq如此強大啊。

    sas程序舉例:

    data color;
       input Region Eyes $ Hair $ Count @@;
       label Eyes  ='Eye Color'
             Hair  ='Hair Color'
             Region='Geographic Region';
       datalines;
    1 blue  fair   23  1 blue  red     7  1 blue  medium 24
    1 blue  dark   11  1 green fair   19  1 green red     7
    1 green medium 18  1 green dark   14  1 brown fair   34
    1 brown red     5  1 brown medium 41  1 brown dark   40
    1 brown black   3  2 blue  fair   46  2 blue  red    21
    2 blue  medium 44  2 blue  dark   40  2 blue  black   6
    2 green fair   50  2 green red    31  2 green medium 37
    2 green dark   23  2 brown fair   56  2 brown red    42
    2 brown medium 53  2 brown dark   54  2 brown black  13
    ;

    proc freq data = color noprint ;                                                                                             
    tables  eyes*hair / measures  noprint ;                                                                                   
    weight count;                                                                                                     
    output out=output KENTB;                                                                                          
    test KENTB;                                                                                                            
    run;

     

    另外跟Kendall tau有點兒關(guān)聯(lián)的是Somer’s D,但是搜索了一下沒看到公式,反正Somer’s D也可以用sas proc freq直接算,方法類似。

    Somers' D(C|R) and Somers' D(R|C) are asymmetric modifications of tau-b.Somers' D differs from tau-b in that it uses a correction only for pairs that are tied on the independent variable.

    posted on 2011-08-28 15:11 人在江湖 閱讀(843) 評論(0)  編輯  收藏 所屬分類: BI
    主站蜘蛛池模板: 久久亚洲高清观看| 亚洲中文字幕丝袜制服一区| 最近2019免费中文字幕6| 性感美女视频在线观看免费精品| 国产一区二区三区在线观看免费 | 国产在线精品一区免费香蕉| 免费在线看污视频| 84pao强力永久免费高清| 亚洲日本在线观看| 曰批免费视频播放免费| 国产在线观看麻豆91精品免费| 免费久久精品国产片香蕉| 久久久亚洲裙底偷窥综合| 亚洲免费在线观看| 国产女高清在线看免费观看 | 久久久久亚洲精品美女| 免费国产va视频永久在线观看| 免费观看午夜在线欧差毛片| 一级黄色免费大片| 国产免费黄色大片| 又粗又长又爽又长黄免费视频| 国产成人高清精品免费鸭子| 日本精品久久久久久久久免费| 久久久久亚洲精品天堂久久久久久| 精品亚洲国产成人av| 日韩中文字幕精品免费一区| 亚洲黄色免费观看| 在线精品免费视频| 一级一片免费视频播放| 亚洲国产精品一区二区久久| 成年性生交大片免费看| 亚洲jjzzjjzz在线观看| 伊人久久免费视频| 久久久久久亚洲精品中文字幕| 四虎永久在线观看免费网站网址 | 国产99在线|亚洲| 成人免费AA片在线观看| 亚洲AV无码成人专区| 亚洲国产日韩在线观频| 老司机午夜在线视频免费观| 国产在线19禁免费观看国产|