<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    人在江湖

      BlogJava :: 首頁 :: 聯系 :: 聚合  :: 管理
      82 Posts :: 10 Stories :: 169 Comments :: 0 Trackbacks

    Kendall tau是用來度量關聯關系的。

    (引自wikipedia:http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient)

    ==============================================

    Let (x1, y1), (x2, y2), …, (xn, yn) be a set of joint observations from two random variables X and Y respectively, such that all the values of (xi) and (yi) are unique. Any pair of observations (xi, yi) and (xj, yj) are said to be concordant if the ranks for both elements agree: that is, if both xi > xj and yi > yj or if both xi < xj and yi < yj. They are said to be discordant, if xi > xj and yi < yj or if xi < xj and yi > yj. If xi = xj or yi = yj, the pair is neither concordant nor discordant.

    The Kendall τ coefficient is defined as:

    \tau = \frac{(\text{number of concordant pairs}) - (\text{number of discordant pairs})}{\frac{1}{2} n (n-1) } .

    =========================================================

    同一篇文章繼續引用關于ties:

    =========================================================

    A pair {(xi, yi), (xj, yj)} is said to be tied if xi = xj or yi = yj; a tied pair is neither concordant nor discordant. When tied pairs arise in the data, the coefficient may be modified in a number of ways to keep it in the range [-1, 1]:

    Tau-b statistic, unlike tau-a, makes adjustments for ties and is suitable for square tables. Values of tau-b range from ?1 (100% negative association, or perfect inversion) to +1 (100% positive association, or perfect agreement). A value of zero indicates the absence of association.

    The Kendall tau-b coefficient is defined as:

    \tau_B = \frac{n_c-n_d}{\sqrt{(n_0-n_1)(n_0-n_2)}}

    where

    \begin{array}{ccl}
n_0 & = & n(n-1)/2\\
n_1 & = & \sum_i t_i (t_i-1)/2 \\
n_2 & = & \sum_j u_j (u_j-1)/2 \\
t_i & = & \mbox{Number of tied values in the } i^{th} \mbox{ group of ties for the first quantity} \\
u_j & = & \mbox{Number of tied values in the } j^{th} \mbox{ group of ties for the second quantity}
\end{array}

    ================================================

    靠,搞了半天才理解,上面公式中所謂nc, nd里面的c和d,指的是concordant和discordant.

    在sas中計算Kendall tau-2比較簡單,直接用proc freq就行,原來proc freq如此強大啊。

    sas程序舉例:

    data color;
       input Region Eyes $ Hair $ Count @@;
       label Eyes  ='Eye Color'
             Hair  ='Hair Color'
             Region='Geographic Region';
       datalines;
    1 blue  fair   23  1 blue  red     7  1 blue  medium 24
    1 blue  dark   11  1 green fair   19  1 green red     7
    1 green medium 18  1 green dark   14  1 brown fair   34
    1 brown red     5  1 brown medium 41  1 brown dark   40
    1 brown black   3  2 blue  fair   46  2 blue  red    21
    2 blue  medium 44  2 blue  dark   40  2 blue  black   6
    2 green fair   50  2 green red    31  2 green medium 37
    2 green dark   23  2 brown fair   56  2 brown red    42
    2 brown medium 53  2 brown dark   54  2 brown black  13
    ;

    proc freq data = color noprint ;                                                                                             
    tables  eyes*hair / measures  noprint ;                                                                                   
    weight count;                                                                                                     
    output out=output KENTB;                                                                                          
    test KENTB;                                                                                                            
    run;

     

    另外跟Kendall tau有點兒關聯的是Somer’s D,但是搜索了一下沒看到公式,反正Somer’s D也可以用sas proc freq直接算,方法類似。

    Somers' D(C|R) and Somers' D(R|C) are asymmetric modifications of tau-b.Somers' D differs from tau-b in that it uses a correction only for pairs that are tied on the independent variable.

    posted on 2011-08-28 15:11 人在江湖 閱讀(837) 評論(0)  編輯  收藏 所屬分類: BI
    主站蜘蛛池模板: 在线看片人成视频免费无遮挡| 小日子的在线观看免费| 午夜视频在线在免费| 亚洲成人激情小说| 国内大片在线免费看| 亚洲av无码日韩av无码网站冲| 嫩草影院免费观看| 无码亚洲成a人在线观看| 免费观看的毛片手机视频| 亚洲JLZZJLZZ少妇| 亚洲国产黄在线观看| a毛片久久免费观看| 亚洲国产精品乱码一区二区| 无码国产精品一区二区免费式芒果| 久久久久久a亚洲欧洲AV| 亚洲黄色免费网址| 亚洲最大的成人网| 亚洲第一黄色网址| 99久久婷婷免费国产综合精品| 亚洲av激情无码专区在线播放| 99久久99久久精品免费看蜜桃 | 亚洲A∨精品一区二区三区| 一级a性色生活片久久无少妇一级婬片免费放 | 在线播放免费人成视频在线观看| 亚洲精品乱码久久久久久蜜桃图片| 国产又大又粗又硬又长免费| 久久久精品国产亚洲成人满18免费网站| 国产亚洲一区二区在线观看 | 久久ww精品w免费人成| 中文日韩亚洲欧美制服| 亚洲国产黄在线观看| 91福利免费视频| 亚洲第一成年免费网站| 亚洲午夜久久久久久久久久| 一本岛高清v不卡免费一三区| 精品久久久久久亚洲综合网| 亚洲成人动漫在线| 国产三级免费观看| 久久A级毛片免费观看| 国产亚洲Av综合人人澡精品| 亚洲AV人人澡人人爽人人夜夜|