<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    Vincent.Chan‘s Blog

    常用鏈接

    統(tǒng)計

    積分與排名

    網(wǎng)站

    最新評論

    《Java 5.0 Tiger》Chapter 2

    Chapter 2. Generics

    2.1 Using Type-Safe Lists

    In pre-Tiger versions of Java, the method signature for add() in List looked like this:

    public boolean add(Object obj);

    In Tiger, though, things have changed:

    public boolean add(E o);

    Before you go looking up E in Javadoc, though, it's just a placeholder. It indicates that this method declares a type variable (E) and can be parameterized. The entire List class is generic:

    public interface List<E> extends Collection, Iterable {
    There's that E again. When you supply a type in the initialization of a List, you parameterize the type—you indicate what type its parameters can accept:
    List<String> onlyStrings = new LinkedList<String>();

    One way to understand this is to imagine that the compiler replaces every occurrence of E with the type you supplied—in this case, a String. Of course, this is just done for this particular instance of List. You can have multiple Lists, all with different types, and all in the same program block.

    2.2 Using Type-Safe Maps

    You use it just as you use List, but with two types (key-vaule) at declaration and initialization.

    2.3 Iterating Over Parameterized Types

    List<String> listOfStrings = new LinkedList<String>();
    listOfStrings.add(
    "Happy");
    listOfStrings.add(
    "Birthday");
    listOfStrings.add(
    "To");
    listOfStrings.add(
    "You");
    for (Iterator<String> i = listOfStrings.iterator(); i.hasNext();) {
        String s 
    = i.next();
        out.println(s);
    }
    You should always pair your Iterators with your collections like this—if the collection is parameterized, the Iterator should use the same parameter.

    2.4 Accepting Parameterized Types as Arguments

    private void printListOfStrings(List<String> list, PrintStream out)
            
    throws IOException {
        
    for (Iterator<String> i = list.iterator(); i.hasNext();) {
            out.println(i.next());
        }

    }
    This allows your method body to act on that parameterization, avoiding class casts and the like.

    2.5 Returning Parameterized Types

    private List<String> getListOfStrings() {
        List
    <String> list = new LinkedList<String>();
        list.add(
    "Hello");
        list.add(
    "World");
        list.add(
    "How");
        list.add(
    "Are");
        list.add(
    "You?");
        
    return list;
    }

    2.6 Using Parameterized Types as Type Parameters

    The Map interface takes two type parameters: one for the key, and one for the value itself. While the key is usually a String or numeric ID, the value can be anything—including a generic type, like a List of Strings.

    So List<String> becomes a parameterized type, which can be supplied to the Map declaration:

    Map<String, List<String>> map = new HashMap<String, List<String>>();

    If that's not enough angle brackets for you, here's yet another layer of generics to add into the mix:

    Map<String, List<List<int[]>>> map = getWeirdMap();

    Of course, where things get really nuts is actually accessing objects from this collection:

    int value = map.get(someKey).get(0).get(0)[0];

    2.7 Checking for Lint

    neglect

    2.8 Generics and Type Conversions


    The key in casting generic types is to understand that as with normal, non-generic types, they form a hierarchy. What's unique about generics, though, is that the hierarchy is based on the base type, not the parameters to that type. For example, consider this declaration:

    LinkedList<Float> floatList = new LinkedList<Float>();

    The conversion is based on LinkedList, not Float. So this is legal:

    List<Float> moreFloats = floatList;

    However, the following is not:

    LinkedList<Number> numberList = floatList;

    While Float is indeed a subclass of Number, it's the generic type that is important, not the parameter type.

    The second concept you'll want to grasp is erasure. Generics in Tiger is a compile-time process, and all typing information is handled at compiletime. Once the classes are compiled, the typing information is erased (thus the term erasure).

    You can also use erasure to break type-safety. Remember that at runtime, erasure removes all your parameterization. This means that when you access parameterized types with reflection, you get the effects of erasure, at compile-time

    2.9 Using Type Wildcards

    Still, here are times when you really do want a plain old List, or Map, or whatever, without parameterization. This is going to result in unchecked errors, unless you employ the generics wildcard.

    public void printList(List<?> list, PrintStream out) throws IOException {
        
    for (Iterator<?> i = list.iterator(); i.hasNext(); ) {
            out.println(i.next().toString());
        }

    }

    ...using List<Object> to get around this same problem? You might want to review Generics and Type Conversions, and see if you really want to do that. A List<Integer> cannot be passed to a method that takes a List<Object>, remember? So your printList( ) method would be limited to collections defined as List<Object>, which isn't much use at all. In these cases, the wildcard really is the only viable solution.

    2.10 Writing Generic Types

    import java.util.ArrayList;
    import java.util.List;

    public class Box<T> {
        
    protected List<T> contents;

        
    public Box() {
            contents 
    = new ArrayList<T>();
        }


        
    public int getSize() {
            
    return contents.size();
        }


        
    public boolean isEmpty() {
            
    return (contents.size() == 0);
        }


        
    public void add(T o) {
            contents.add(o);
        }


        
    public T grab() {
            
    if (!isEmpty()) {
                
    return contents.remove(0);
            }
     else
                
    return null;
        }

    }

    Just as you've seen in Tiger's pre-defined generic types, a single letter is used as the representative for a type parameter.

    You create a new instance of this type exactly as you might expect:

    Box<String> box = new Box<String>();

    This effectively replaces all the occurrences of T with String for that specific instance, and suddenly you've got yourself a String Box, so to speak.

    2.11 Restricting Type Parameters

    This is pretty simple—you can actually insert an extends className onto your type variable, and voila! Check out:

    import java.util.Iterator;

    public class NumberBox<extends Number> extends Box<N> {
        
    public NumberBox() {
            
    super();
        }


        
    // Sum everything in the box
        public double sum() {
            
    double total = 0;

            
    for (Iterator<N> i = contents.iterator(); i.hasNext();) {
                total 
    = total + i.next().doubleValue();
            }

            
    return total;
        }

    }

    The only types allowed here are extensions of the class Number (or Number itself).

    You can use this same syntax in method definitions:

        public static double sum(Box<? extends Number> box1,
                Box
    <? extends Number> box2) {
            
    double total = 0;
            
    for (Iterator<? extends Number> i = box1.contents.iterator(); i
                    .hasNext();) 
    {
                total 
    = total + i.next().doubleValue();
            }

            
    for (Iterator<? extends Number> i = box2.contents.iterator(); i
                    .hasNext();) 
    {
                total 
    = total + i.next().doubleValue();
            }

            
    return total;
        }

    This starts to get a little weird, I realize, but them's the breaks. It gets worse because you have to use the wildcard indicator, and then repeat the expression (? extends Number) in the method body. One way to clean this up is to declare your own type variable inline (and make your syntax even odder):

        public static <extends Number> double sum(Box<A> box1, Box<A> box2) {
            
    double total = 0;
            
    for (Iterator<A> i = box1.contents.iterator(); i.hasNext();) {
                total 
    = total + i.next().doubleValue();
            }

            
    for (Iterator<A> i = box2.contents.iterator(); i.hasNext();) {
                total 
    = total + i.next().doubleValue();
            }

            
    return total;
        }

    The portion of the method declaration right before the return value, <A extends Number>, provides a typing variable which is then used throughout the method declaration and body.

    posted on 2006-02-18 18:29 Vincent.Chen 閱讀(144) 評論(0)  編輯  收藏 所屬分類: Java

    主站蜘蛛池模板: 成人午夜免费视频| 亚洲国产综合久久天堂| 免费看少妇高潮成人片| 亚洲av无码专区在线电影| 99人中文字幕亚洲区| 亚洲日韩中文无码久久| 免费在线观看视频a| 四虎永久在线精品免费网址 | 麻豆国产精品免费视频| 手机看片国产免费永久| 亚洲日韩在线中文字幕综合| 国产婷婷综合丁香亚洲欧洲| 亚洲精品免费在线视频| 亚洲AV日韩AV天堂一区二区三区| 亚洲人成无码www久久久| 日本免费人成视频播放| 曰皮全部过程视频免费国产30分钟 | 国产成人午夜精品免费视频| 日韩中文字幕免费视频| 国产免费一区二区三区在线观看| 国产福利免费视频| 亚洲精品视频免费| 久久精品成人免费国产片小草| 亚洲高清免费视频| 国产高清对白在线观看免费91| 十八禁的黄污污免费网站| 女人裸身j部免费视频无遮挡| 国产精品久久亚洲一区二区| 国产亚洲欧美在线观看| 老司机免费午夜精品视频| 精品特级一级毛片免费观看| 小说区亚洲自拍另类| 看Aⅴ免费毛片手机播放| 日产久久强奸免费的看| 一区二区三区视频免费| 一本岛v免费不卡一二三区| 久久er国产精品免费观看8| GOGOGO高清免费看韩国| 久久久久久久99精品免费| 鲁大师在线影院免费观看| 亚欧在线精品免费观看一区|