<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    Vincent.Chan‘s Blog

    常用鏈接

    統計

    積分與排名

    網站

    最新評論

    《Java 5.0 Tiger》Chapter 2

    Chapter 2. Generics

    2.1 Using Type-Safe Lists

    In pre-Tiger versions of Java, the method signature for add() in List looked like this:

    public boolean add(Object obj);

    In Tiger, though, things have changed:

    public boolean add(E o);

    Before you go looking up E in Javadoc, though, it's just a placeholder. It indicates that this method declares a type variable (E) and can be parameterized. The entire List class is generic:

    public interface List<E> extends Collection, Iterable {
    There's that E again. When you supply a type in the initialization of a List, you parameterize the type—you indicate what type its parameters can accept:
    List<String> onlyStrings = new LinkedList<String>();

    One way to understand this is to imagine that the compiler replaces every occurrence of E with the type you supplied—in this case, a String. Of course, this is just done for this particular instance of List. You can have multiple Lists, all with different types, and all in the same program block.

    2.2 Using Type-Safe Maps

    You use it just as you use List, but with two types (key-vaule) at declaration and initialization.

    2.3 Iterating Over Parameterized Types

    List<String> listOfStrings = new LinkedList<String>();
    listOfStrings.add(
    "Happy");
    listOfStrings.add(
    "Birthday");
    listOfStrings.add(
    "To");
    listOfStrings.add(
    "You");
    for (Iterator<String> i = listOfStrings.iterator(); i.hasNext();) {
        String s 
    = i.next();
        out.println(s);
    }
    You should always pair your Iterators with your collections like this—if the collection is parameterized, the Iterator should use the same parameter.

    2.4 Accepting Parameterized Types as Arguments

    private void printListOfStrings(List<String> list, PrintStream out)
            
    throws IOException {
        
    for (Iterator<String> i = list.iterator(); i.hasNext();) {
            out.println(i.next());
        }

    }
    This allows your method body to act on that parameterization, avoiding class casts and the like.

    2.5 Returning Parameterized Types

    private List<String> getListOfStrings() {
        List
    <String> list = new LinkedList<String>();
        list.add(
    "Hello");
        list.add(
    "World");
        list.add(
    "How");
        list.add(
    "Are");
        list.add(
    "You?");
        
    return list;
    }

    2.6 Using Parameterized Types as Type Parameters

    The Map interface takes two type parameters: one for the key, and one for the value itself. While the key is usually a String or numeric ID, the value can be anything—including a generic type, like a List of Strings.

    So List<String> becomes a parameterized type, which can be supplied to the Map declaration:

    Map<String, List<String>> map = new HashMap<String, List<String>>();

    If that's not enough angle brackets for you, here's yet another layer of generics to add into the mix:

    Map<String, List<List<int[]>>> map = getWeirdMap();

    Of course, where things get really nuts is actually accessing objects from this collection:

    int value = map.get(someKey).get(0).get(0)[0];

    2.7 Checking for Lint

    neglect

    2.8 Generics and Type Conversions


    The key in casting generic types is to understand that as with normal, non-generic types, they form a hierarchy. What's unique about generics, though, is that the hierarchy is based on the base type, not the parameters to that type. For example, consider this declaration:

    LinkedList<Float> floatList = new LinkedList<Float>();

    The conversion is based on LinkedList, not Float. So this is legal:

    List<Float> moreFloats = floatList;

    However, the following is not:

    LinkedList<Number> numberList = floatList;

    While Float is indeed a subclass of Number, it's the generic type that is important, not the parameter type.

    The second concept you'll want to grasp is erasure. Generics in Tiger is a compile-time process, and all typing information is handled at compiletime. Once the classes are compiled, the typing information is erased (thus the term erasure).

    You can also use erasure to break type-safety. Remember that at runtime, erasure removes all your parameterization. This means that when you access parameterized types with reflection, you get the effects of erasure, at compile-time

    2.9 Using Type Wildcards

    Still, here are times when you really do want a plain old List, or Map, or whatever, without parameterization. This is going to result in unchecked errors, unless you employ the generics wildcard.

    public void printList(List<?> list, PrintStream out) throws IOException {
        
    for (Iterator<?> i = list.iterator(); i.hasNext(); ) {
            out.println(i.next().toString());
        }

    }

    ...using List<Object> to get around this same problem? You might want to review Generics and Type Conversions, and see if you really want to do that. A List<Integer> cannot be passed to a method that takes a List<Object>, remember? So your printList( ) method would be limited to collections defined as List<Object>, which isn't much use at all. In these cases, the wildcard really is the only viable solution.

    2.10 Writing Generic Types

    import java.util.ArrayList;
    import java.util.List;

    public class Box<T> {
        
    protected List<T> contents;

        
    public Box() {
            contents 
    = new ArrayList<T>();
        }


        
    public int getSize() {
            
    return contents.size();
        }


        
    public boolean isEmpty() {
            
    return (contents.size() == 0);
        }


        
    public void add(T o) {
            contents.add(o);
        }


        
    public T grab() {
            
    if (!isEmpty()) {
                
    return contents.remove(0);
            }
     else
                
    return null;
        }

    }

    Just as you've seen in Tiger's pre-defined generic types, a single letter is used as the representative for a type parameter.

    You create a new instance of this type exactly as you might expect:

    Box<String> box = new Box<String>();

    This effectively replaces all the occurrences of T with String for that specific instance, and suddenly you've got yourself a String Box, so to speak.

    2.11 Restricting Type Parameters

    This is pretty simple—you can actually insert an extends className onto your type variable, and voila! Check out:

    import java.util.Iterator;

    public class NumberBox<extends Number> extends Box<N> {
        
    public NumberBox() {
            
    super();
        }


        
    // Sum everything in the box
        public double sum() {
            
    double total = 0;

            
    for (Iterator<N> i = contents.iterator(); i.hasNext();) {
                total 
    = total + i.next().doubleValue();
            }

            
    return total;
        }

    }

    The only types allowed here are extensions of the class Number (or Number itself).

    You can use this same syntax in method definitions:

        public static double sum(Box<? extends Number> box1,
                Box
    <? extends Number> box2) {
            
    double total = 0;
            
    for (Iterator<? extends Number> i = box1.contents.iterator(); i
                    .hasNext();) 
    {
                total 
    = total + i.next().doubleValue();
            }

            
    for (Iterator<? extends Number> i = box2.contents.iterator(); i
                    .hasNext();) 
    {
                total 
    = total + i.next().doubleValue();
            }

            
    return total;
        }

    This starts to get a little weird, I realize, but them's the breaks. It gets worse because you have to use the wildcard indicator, and then repeat the expression (? extends Number) in the method body. One way to clean this up is to declare your own type variable inline (and make your syntax even odder):

        public static <extends Number> double sum(Box<A> box1, Box<A> box2) {
            
    double total = 0;
            
    for (Iterator<A> i = box1.contents.iterator(); i.hasNext();) {
                total 
    = total + i.next().doubleValue();
            }

            
    for (Iterator<A> i = box2.contents.iterator(); i.hasNext();) {
                total 
    = total + i.next().doubleValue();
            }

            
    return total;
        }

    The portion of the method declaration right before the return value, <A extends Number>, provides a typing variable which is then used throughout the method declaration and body.

    posted on 2006-02-18 18:29 Vincent.Chen 閱讀(147) 評論(0)  編輯  收藏 所屬分類: Java

    主站蜘蛛池模板: APP在线免费观看视频| 亚洲精品国产电影| 久久综合亚洲色HEZYO社区 | 国产午夜亚洲精品国产成人小说| 亚洲人成电影网站色| 精品久久久久久国产免费了 | 国产亚洲成人在线播放va| 久久精品亚洲中文字幕无码麻豆| 国产精品高清视亚洲精品| 免费的黄网站男人的天堂| 91精品视频在线免费观看| 国产乱子影视频上线免费观看| 亚洲色成人网站WWW永久| 中文字幕一区二区三区免费视频| 日本精品人妻无码免费大全| 情人伊人久久综合亚洲| 国产午夜精品久久久久免费视| 久久精品九九亚洲精品天堂| 久久免费国产精品一区二区| 夜色阁亚洲一区二区三区| 手机永久免费的AV在线电影网| 亚洲日韩涩涩成人午夜私人影院| 中文字幕在线观看亚洲日韩| 国产成人免费AV在线播放| 亚洲影院在线观看| AV免费网址在线观看| 国产精品亚洲а∨无码播放不卡 | 亚洲精品国产高清在线观看| 91香蕉国产线观看免费全集| 国产亚洲精品高清在线| 久久久久国产精品免费免费不卡| 亚洲а∨天堂久久精品| 亚洲精品国产高清在线观看| 国产免费女女脚奴视频网| 亚洲大码熟女在线观看| 亚洲精品制服丝袜四区| 一级毛片在播放免费| 亚洲AⅤ无码一区二区三区在线| 97国免费在线视频| 中中文字幕亚洲无线码| ZZIJZZIJ亚洲日本少妇JIZJIZ |