<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    Vincent.Chan‘s Blog

    常用鏈接

    統(tǒng)計

    積分與排名

    網(wǎng)站

    最新評論

    《Java 5.0 Tiger》Chapter 2

    Chapter 2. Generics

    2.1 Using Type-Safe Lists

    In pre-Tiger versions of Java, the method signature for add() in List looked like this:

    public boolean add(Object obj);

    In Tiger, though, things have changed:

    public boolean add(E o);

    Before you go looking up E in Javadoc, though, it's just a placeholder. It indicates that this method declares a type variable (E) and can be parameterized. The entire List class is generic:

    public interface List<E> extends Collection, Iterable {
    There's that E again. When you supply a type in the initialization of a List, you parameterize the type—you indicate what type its parameters can accept:
    List<String> onlyStrings = new LinkedList<String>();

    One way to understand this is to imagine that the compiler replaces every occurrence of E with the type you supplied—in this case, a String. Of course, this is just done for this particular instance of List. You can have multiple Lists, all with different types, and all in the same program block.

    2.2 Using Type-Safe Maps

    You use it just as you use List, but with two types (key-vaule) at declaration and initialization.

    2.3 Iterating Over Parameterized Types

    List<String> listOfStrings = new LinkedList<String>();
    listOfStrings.add(
    "Happy");
    listOfStrings.add(
    "Birthday");
    listOfStrings.add(
    "To");
    listOfStrings.add(
    "You");
    for (Iterator<String> i = listOfStrings.iterator(); i.hasNext();) {
        String s 
    = i.next();
        out.println(s);
    }
    You should always pair your Iterators with your collections like this—if the collection is parameterized, the Iterator should use the same parameter.

    2.4 Accepting Parameterized Types as Arguments

    private void printListOfStrings(List<String> list, PrintStream out)
            
    throws IOException {
        
    for (Iterator<String> i = list.iterator(); i.hasNext();) {
            out.println(i.next());
        }

    }
    This allows your method body to act on that parameterization, avoiding class casts and the like.

    2.5 Returning Parameterized Types

    private List<String> getListOfStrings() {
        List
    <String> list = new LinkedList<String>();
        list.add(
    "Hello");
        list.add(
    "World");
        list.add(
    "How");
        list.add(
    "Are");
        list.add(
    "You?");
        
    return list;
    }

    2.6 Using Parameterized Types as Type Parameters

    The Map interface takes two type parameters: one for the key, and one for the value itself. While the key is usually a String or numeric ID, the value can be anything—including a generic type, like a List of Strings.

    So List<String> becomes a parameterized type, which can be supplied to the Map declaration:

    Map<String, List<String>> map = new HashMap<String, List<String>>();

    If that's not enough angle brackets for you, here's yet another layer of generics to add into the mix:

    Map<String, List<List<int[]>>> map = getWeirdMap();

    Of course, where things get really nuts is actually accessing objects from this collection:

    int value = map.get(someKey).get(0).get(0)[0];

    2.7 Checking for Lint

    neglect

    2.8 Generics and Type Conversions


    The key in casting generic types is to understand that as with normal, non-generic types, they form a hierarchy. What's unique about generics, though, is that the hierarchy is based on the base type, not the parameters to that type. For example, consider this declaration:

    LinkedList<Float> floatList = new LinkedList<Float>();

    The conversion is based on LinkedList, not Float. So this is legal:

    List<Float> moreFloats = floatList;

    However, the following is not:

    LinkedList<Number> numberList = floatList;

    While Float is indeed a subclass of Number, it's the generic type that is important, not the parameter type.

    The second concept you'll want to grasp is erasure. Generics in Tiger is a compile-time process, and all typing information is handled at compiletime. Once the classes are compiled, the typing information is erased (thus the term erasure).

    You can also use erasure to break type-safety. Remember that at runtime, erasure removes all your parameterization. This means that when you access parameterized types with reflection, you get the effects of erasure, at compile-time

    2.9 Using Type Wildcards

    Still, here are times when you really do want a plain old List, or Map, or whatever, without parameterization. This is going to result in unchecked errors, unless you employ the generics wildcard.

    public void printList(List<?> list, PrintStream out) throws IOException {
        
    for (Iterator<?> i = list.iterator(); i.hasNext(); ) {
            out.println(i.next().toString());
        }

    }

    ...using List<Object> to get around this same problem? You might want to review Generics and Type Conversions, and see if you really want to do that. A List<Integer> cannot be passed to a method that takes a List<Object>, remember? So your printList( ) method would be limited to collections defined as List<Object>, which isn't much use at all. In these cases, the wildcard really is the only viable solution.

    2.10 Writing Generic Types

    import java.util.ArrayList;
    import java.util.List;

    public class Box<T> {
        
    protected List<T> contents;

        
    public Box() {
            contents 
    = new ArrayList<T>();
        }


        
    public int getSize() {
            
    return contents.size();
        }


        
    public boolean isEmpty() {
            
    return (contents.size() == 0);
        }


        
    public void add(T o) {
            contents.add(o);
        }


        
    public T grab() {
            
    if (!isEmpty()) {
                
    return contents.remove(0);
            }
     else
                
    return null;
        }

    }

    Just as you've seen in Tiger's pre-defined generic types, a single letter is used as the representative for a type parameter.

    You create a new instance of this type exactly as you might expect:

    Box<String> box = new Box<String>();

    This effectively replaces all the occurrences of T with String for that specific instance, and suddenly you've got yourself a String Box, so to speak.

    2.11 Restricting Type Parameters

    This is pretty simple—you can actually insert an extends className onto your type variable, and voila! Check out:

    import java.util.Iterator;

    public class NumberBox<extends Number> extends Box<N> {
        
    public NumberBox() {
            
    super();
        }


        
    // Sum everything in the box
        public double sum() {
            
    double total = 0;

            
    for (Iterator<N> i = contents.iterator(); i.hasNext();) {
                total 
    = total + i.next().doubleValue();
            }

            
    return total;
        }

    }

    The only types allowed here are extensions of the class Number (or Number itself).

    You can use this same syntax in method definitions:

        public static double sum(Box<? extends Number> box1,
                Box
    <? extends Number> box2) {
            
    double total = 0;
            
    for (Iterator<? extends Number> i = box1.contents.iterator(); i
                    .hasNext();) 
    {
                total 
    = total + i.next().doubleValue();
            }

            
    for (Iterator<? extends Number> i = box2.contents.iterator(); i
                    .hasNext();) 
    {
                total 
    = total + i.next().doubleValue();
            }

            
    return total;
        }

    This starts to get a little weird, I realize, but them's the breaks. It gets worse because you have to use the wildcard indicator, and then repeat the expression (? extends Number) in the method body. One way to clean this up is to declare your own type variable inline (and make your syntax even odder):

        public static <extends Number> double sum(Box<A> box1, Box<A> box2) {
            
    double total = 0;
            
    for (Iterator<A> i = box1.contents.iterator(); i.hasNext();) {
                total 
    = total + i.next().doubleValue();
            }

            
    for (Iterator<A> i = box2.contents.iterator(); i.hasNext();) {
                total 
    = total + i.next().doubleValue();
            }

            
    return total;
        }

    The portion of the method declaration right before the return value, <A extends Number>, provides a typing variable which is then used throughout the method declaration and body.

    posted on 2006-02-18 18:29 Vincent.Chen 閱讀(144) 評論(0)  編輯  收藏 所屬分類: Java

    主站蜘蛛池模板: 国产伦一区二区三区免费| 国产专区一va亚洲v天堂| 美女扒开屁股让男人桶爽免费| 国产成人精品男人免费| 国产成人无码区免费内射一片色欲| 亚洲黄色网站视频| 国产免费直播在线观看视频| 在线观看免费黄色网址| 亚洲制服丝袜中文字幕| 亚洲综合最新无码专区| 日韩免费一区二区三区在线 | 亚洲色无码国产精品网站可下载| 亚洲AV无码成人精品区大在线| 欧洲人免费视频网站在线| 亚洲精品国产suv一区88| 亚洲AV人无码激艳猛片| 亚洲成A人片在线观看无码3D| 69视频免费在线观看| 成年网站免费入口在线观看| 亚洲一卡2卡4卡5卡6卡在线99 | 亚洲熟妇丰满多毛XXXX| 久久精品无码一区二区三区免费| 中国国语毛片免费观看视频| 亚洲综合色一区二区三区| 久久精品国产99精品国产亚洲性色| 国产网站在线免费观看| 国产曰批免费视频播放免费s | 免费人成在线观看网站品爱网日本 | 亚洲首页在线观看| 国产亚洲美女精品久久久| 色播在线永久免费视频| 天天影院成人免费观看| a级毛片无码免费真人久久| 香蕉97碰碰视频免费| 亚洲中文无码永久免费| 亚洲黄色在线电影| 亚洲国产a∨无码中文777| 亚洲成年人啊啊aa在线观看| 日本不卡免费新一二三区| 一个人免费观看视频www| 91在线老王精品免费播放|