<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    adding the Amazon Rekognition component

    In this exercise, you will extend the application by adding the Amazon Rekognition component. As soon as you upload a photo to your Amazon S3 bucket, Amazon Rekognition processes the photo and identifies objects, people, text, scenes, and activities in the photo and labels it accordingly. 
    Note: Make sure to sign in to your AWS account with the AWS IAM user edXProjectUser credentials.

    To get started, follow the instructions below.

    1. Download the exercise code .zip file to your AWS Cloud9 environment.

    2. Unzip the exercise code .zip file.

    • Unzip the exercise code .zip file by typing the command below on your AWS Cloud9 terminal.
    • unzip ex-rekognition.zip

      The contents of the .zip file should be extracted to a folder with a similar name. You can view the folder on the left tree view.

    • You may want to close any tabs that remain open from previous exercises.

    3. Explore the exercise code.

    • Open the exercise-rekognition/FlaskApp/application.py file.
    • In the Homepage route function, notice that a Boto 3 client for Amazon Rekognition is created. The image uploaded in the Amazon S3 bucket is passed to the detect_labels API, which returns a list of labels processed by Amazon Rekognition. These labels are then populated on the UI.

    4. Run and test the code.

    • To run the application.py code, on the top menu bar, click Run -> Run Configurations -> Python3RunConfiguration.
    • Important: Notice that the run configuration runs the application.py for the previous exercise.
    • Point the run configuration to the correct exercise folder by editing the folder path in the Command text box in the bottom pane.
      In that text box, type exercise-rekognition/FlaskApp/application.py
    • Click Run on the left side. You should see a message like this:
    • Running on http://0.0.0.0:5000/

    • Go to your browser and type the IP address of the Amazon EC2 instance that hosts your AWS Cloud9 environment. At the end of the IP address, type :5000

      The application should now have the functionality related to Amazon Rekognition.

    • To test the Amazon Rekognition component, click Home on the application.
    • Upload an image. Amazon Rekognition should label the image with the image properties.

    Optional Challenge

    The Boto 3 detect_labels response includes a Confidence value. Can you update the application UI to include the Confidence? Or define a threshold and only display labels over the confidence threshold?



    眼鏡蛇

    posted on 2018-04-19 11:16 眼鏡蛇 閱讀(163) 評論(0)  編輯  收藏 所屬分類: AWS

    <2025年5月>
    27282930123
    45678910
    11121314151617
    18192021222324
    25262728293031
    1234567

    導航

    統計

    常用鏈接

    留言簿(6)

    隨筆分類

    隨筆檔案

    文章分類

    文章檔案

    搜索

    最新評論

    閱讀排行榜

    評論排行榜

    主站蜘蛛池模板: 免费看一级高潮毛片| 最近中文字幕免费2019| 国产免费A∨在线播放| 免费观看的av毛片的网站| 中文字幕在线亚洲精品| 性色av极品无码专区亚洲| 男人的天堂网免费网站| 亚洲阿v天堂在线| 亚洲国产精品久久网午夜| 久久久久久精品免费免费自慰| 亚洲网红精品大秀在线观看| 亚洲av无码成人影院一区| 午夜男人一级毛片免费| 蜜芽亚洲av无码一区二区三区| 国产青草视频免费观看97| 亚洲天天做日日做天天看| 日产久久强奸免费的看| 超清首页国产亚洲丝袜| 免费在线观看一级片| 一本久到久久亚洲综合| 亚洲第一成人在线| 日本免费无遮挡吸乳视频电影| 免费人成视频在线观看免费| 亚洲日产无码中文字幕| 一级视频免费观看| 亚洲国产精品久久66| 97性无码区免费| 免费一级毛suv好看的国产网站| 亚洲区小说区图片区| 男女啪啪免费体验区| 久久精品国产亚洲av麻| 一个人看的www在线观看免费| 亚洲一区精品中文字幕| 午夜老司机免费视频| 两个人www免费高清视频| 亚洲制服丝袜在线播放| 亚洲国产一区二区视频网站| 无码成A毛片免费| 国产精品亚洲а∨无码播放麻豆| 午夜网站免费版在线观看| a级黄色毛片免费播放视频|