<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    adding the Amazon Rekognition component

    In this exercise, you will extend the application by adding the Amazon Rekognition component. As soon as you upload a photo to your Amazon S3 bucket, Amazon Rekognition processes the photo and identifies objects, people, text, scenes, and activities in the photo and labels it accordingly. 
    Note: Make sure to sign in to your AWS account with the AWS IAM user edXProjectUser credentials.

    To get started, follow the instructions below.

    1. Download the exercise code .zip file to your AWS Cloud9 environment.

    2. Unzip the exercise code .zip file.

    • Unzip the exercise code .zip file by typing the command below on your AWS Cloud9 terminal.
    • unzip ex-rekognition.zip

      The contents of the .zip file should be extracted to a folder with a similar name. You can view the folder on the left tree view.

    • You may want to close any tabs that remain open from previous exercises.

    3. Explore the exercise code.

    • Open the exercise-rekognition/FlaskApp/application.py file.
    • In the Homepage route function, notice that a Boto 3 client for Amazon Rekognition is created. The image uploaded in the Amazon S3 bucket is passed to the detect_labels API, which returns a list of labels processed by Amazon Rekognition. These labels are then populated on the UI.

    4. Run and test the code.

    • To run the application.py code, on the top menu bar, click Run -> Run Configurations -> Python3RunConfiguration.
    • Important: Notice that the run configuration runs the application.py for the previous exercise.
    • Point the run configuration to the correct exercise folder by editing the folder path in the Command text box in the bottom pane.
      In that text box, type exercise-rekognition/FlaskApp/application.py
    • Click Run on the left side. You should see a message like this:
    • Running on http://0.0.0.0:5000/

    • Go to your browser and type the IP address of the Amazon EC2 instance that hosts your AWS Cloud9 environment. At the end of the IP address, type :5000

      The application should now have the functionality related to Amazon Rekognition.

    • To test the Amazon Rekognition component, click Home on the application.
    • Upload an image. Amazon Rekognition should label the image with the image properties.

    Optional Challenge

    The Boto 3 detect_labels response includes a Confidence value. Can you update the application UI to include the Confidence? Or define a threshold and only display labels over the confidence threshold?



    眼鏡蛇

    posted on 2018-04-19 11:16 眼鏡蛇 閱讀(161) 評論(0)  編輯  收藏 所屬分類: AWS

    <2025年5月>
    27282930123
    45678910
    11121314151617
    18192021222324
    25262728293031
    1234567

    導航

    統計

    常用鏈接

    留言簿(6)

    隨筆分類

    隨筆檔案

    文章分類

    文章檔案

    搜索

    最新評論

    閱讀排行榜

    評論排行榜

    主站蜘蛛池模板: 有码人妻在线免费看片| 亚洲午夜无码久久| 久久久久久噜噜精品免费直播 | 亚洲成a人片在线观| 精品无码人妻一区二区免费蜜桃| 国产成人无码综合亚洲日韩| a级毛片毛片免费观看久潮| 亚洲va无码va在线va天堂| 久久这里只精品国产免费10| 无码乱人伦一区二区亚洲一 | 黄页网站免费观看| 亚洲色精品VR一区区三区| 国产视频精品免费| 日韩在线观看免费| 亚洲日韩精品无码专区网址| 七色永久性tv网站免费看| 亚洲国产美女福利直播秀一区二区 | 亚洲一区免费观看| 亚洲视频免费在线看| 亚洲色偷偷综合亚洲av78| 国产在线19禁免费观看国产 | 国产精品手机在线亚洲| 91免费国产在线观看| 亚洲色少妇熟女11p| 成年女人视频网站免费m | 亚洲av日韩av综合| 国产精品免费视频播放器| fc2免费人成在线| 亚洲精品国产成人专区| 免费无码又爽又刺激毛片| 国产免费伦精品一区二区三区 | 免费国产一级特黄久久| 精品视频一区二区三区免费| 亚洲免费一级视频| 国产一级特黄高清免费大片| 少妇性饥渴无码A区免费| 在线亚洲高清揄拍自拍一品区| 亚洲国产精品成人久久蜜臀 | 亚洲国产日韩女人aaaaaa毛片在线| 日本一线a视频免费观看| 精品亚洲永久免费精品 |