??????SUBQUERY SOLUTION ??????---------------------- ??????SELECT st.stor_name AS 'Store', ??????(SELECT SUM(bs.qty) ??????FROM big_sales AS bs ??????WHERE bs.stor_id = st.stor_id), 0) ??????AS 'Books Sold' ??????FROM stores AS st ??????WHERE st.stor_id IN ??????(SELECT DISTINCT stor_id ??????FROM big_sales) | JOIN SOLUTION ---------------------- SELECT st.stor_name AS 'Store', SUM(bs.qty) AS 'Books Sold' FROM stores AS st JOIN big_sales AS bs ON bs.stor_id = st.stor_id WHERE st.stor_id IN (SELECT DISTINCT stor_id FROM big_sales) GROUP BY st.stor_name |
??????SUBQUERY SOLUTION ??????---------------------- ??????SQL Server parse and compile time: ??????????CPU time = 28 ms ??????????elapsed time = 28 ms ??????SQL Server Execution Times: ??????????CPU time = 145 ms ??????????elapsed time = 145 ms ??????Table 'big_sales'. Scan count 14, logical reads ??????1884, physical reads 0, read-ahead reads 0. ??????Table 'stores'. Scan count 12, logical reads 24, | JOIN SOLUTION ---------------------- SQL Server parse and compile time: ????CPU time = 50 ms ????elapsed time = 54 ms SQL Server Execution Times: ????CPU time = 109 ms ????elapsed time = 109 ms Table 'big_sales'. Scan count 14, logical reads 966, physical reads 0, read-ahead reads 0. Table 'stores'. Scan count 12, logical reads 24, |
??????不必更深探索,我們可以看到在CPU和總的實(shí)耗時(shí)間方面連接更快,僅需要子查詢方案邏輯讀的一半。此外,這兩種情況伴隨著相同的結(jié)果集,雖然排序的順序不同,這是因?yàn)檫B接查詢(由于它的GROUP BY子句)有一個(gè)隱含的ORDER BY:
??????Store Books Sold ??????------------------------------------------------- ??????Barnum's 154125 ??????Bookbeat 518080 ??????Doc-U-Mat: Quality Laundry and Books 581130 ??????Eric the Read Books 76931 ??????Fricative Bookshop 259060 ??????News & Brews 161090 ??????(6 row(s) affected) ??????Store Books Sold ??????------------------------------------------------- ??????Eric the Read Books 76931 ??????Barnum's 154125 ??????News & Brews 161090 ??????Doc-U-Mat: Quality Laundry and Books 581130 ??????Fricative Bookshop 259060 ??????Bookbeat 518080 ??????(6 row(s) affected) |
??????|--Compute Scalar(DEFINE:([Expr1006]=isnull([Expr1004], 0))) ??????|--Nested Loops(Left Outer Join, OUTER REFERENCES:([st].[stor_id])) ??????|--Nested Loops(Inner Join, OUTER REFERENCES:([big_sales].[stor_id])) ?????? ??| |--Stream Aggregate(GROUP BY:([big_sales].[stor_id])) ????????????| | |--Clustered Index Scan(OBJECT:([pubs].[dbo].[big_sales]. ????????????[UPKCL_big_sales]), ORDERED FORWARD) ?????? ??| |--Clustered Index Seek(OBJECT:([pubs].[dbo].[stores].[UPK_storeid] ??????AS [st]), ??????SEEK:([st].[stor_id]=[big_sales].[stor_id]) ORDERED FORWARD) ?????? |--Stream Aggregate(DEFINE:([Expr1004]=SUM([bs].[qty]))) ??????|--Clustered Index Seek(OBJECT:([pubs].[dbo].[big_sales]. ????????[UPKCL_big_sales] AS [bs]), ??????SEEK:([bs].[stor_id]=[st].[stor_id]) ORDERED FORWARD) |
??????|--Stream Aggregate(GROUP BY:([st].[stor_name]) ????????DEFINE:([Expr1004]=SUM([partialagg1005]))) ??????|--Sort(ORDER BY:([st].[stor_name] ASC)) ??????|--Nested Loops(Left Semi Join, OUTER REFERENCES:([st].[stor_id])) ??????|--Nested Loops(Inner Join, OUTER REFERENCES:([bs].[stor_id])) ????????| |--Stream Aggregate(GROUP BY:([bs].[stor_id]) ??????????DEFINE:([partialagg1005]=SUM([bs].[qty]))) ???????????? | | |--Clustered Index Scan(OBJECT:([pubs].[dbo].[big_sales]. ????????????[UPKCL_big_sales] AS [bs]), ORDERED FORWARD) ????????| |--Clustered Index Seek(OBJECT:([pubs].[dbo].[stores]. ????????????[UPK_storeid] AS [st]), ????????SEEK:([st].[stor_id]=[bs].[stor_id]) ORDERED FORWARD) ??????|--Clustered Index Seek(OBJECT:([pubs].[dbo].[big_sales]. ??????????[UPKCL_big_sales]), ????????SEEK:([big_sales].[stor_id]=[st].[stor_id]) ORDERED FORWARD) |
??????使用連接是更有效的方案。它不需要額外的流聚合(stream aggregate),即子查詢所需在big_sales.qty列的求和。
??????UNION vs UNION ALL
??????無論何時(shí)盡可能用UNION ALL 代替UNION。其中的差異是因?yàn)閁NION有排除重復(fù)行并且對結(jié)果進(jìn)行排序的副作用,而UNION ALL不會做這些工作。選擇無重復(fù)行的結(jié)果需要建立臨時(shí)工作表,用它排序所有行并且在輸出之前排序。(在一個(gè)select distinct 查詢中顯示查詢計(jì)劃將發(fā)現(xiàn)存在一個(gè)流聚合,消耗百分之三十多的資源處理查詢)。當(dāng)你確切知道你得需要時(shí),可以使用UNION。但如果你估計(jì)在結(jié)果集中沒有重復(fù)的行,就使用UNION ALL吧。它只是從一個(gè)表或一個(gè)連接中選擇,然后從另一個(gè)表中選擇,附加在第一條結(jié)果集的底部。UNION ALL不需要工作表和排序(除非其它條件引起的)。在大部分情況下UNION ALL更具效率。一個(gè)有潛在危險(xiǎn)的問題是使用UNION會在數(shù)據(jù)庫中產(chǎn)生巨大的泛濫的臨時(shí)工作表。如果你期望從UNION查詢中獲得大量的結(jié)果集時(shí),這就可能發(fā)生。
??????示例
??????下面的查詢是選擇pubs數(shù)據(jù)庫中的表sales的所有商店的ID,也選擇表big_sales中的所有商店的ID,這個(gè)表中我們加入了70,000多行數(shù)據(jù)。在這兩個(gè)方案間不同之處僅僅是UNION 與UNION ALL的使用比較。但在這個(gè)計(jì)劃中加入ALL關(guān)鍵字產(chǎn)生了三大不同。第一個(gè)方案中,在返回結(jié)果集給客戶端之前需要流聚合并且排序結(jié)果。第二個(gè)查詢更有效率,特別是對大表。在這個(gè)例子中兩個(gè)查詢返回同樣的結(jié)果集,雖然順序不同。在我們的測試中有兩個(gè)臨時(shí)表。你的結(jié)果可能會稍有差異。
??????UNION SOLUTION ??????----------------------- | ??????UNION ALL SOLUTION ??????----------------------- |
??????SELECT stor_id FROM big_sales ??????UNION ??????SELECT stor_id FROM sales ??????---------------------------- | ??????SELECT stor_id FROM big_sales ??????UNION ALL ??????SELECT stor_id FROM sales ??????---------------------------- |
??????|--Merge Join(Union) ?????? |--Stream Aggregate(GROUP BY: ??????([big_sales].[stor_id])) ??????| |--Clustered Index Scan ??????(OBJECT:([pubs].[dbo]. ??????[big_sales]. ??????[UPKCL_big_sales]), ??????ORDERED FORWARD) ??????|--Stream Aggregate(GROUP BY: ??????([sales].[stor_id])) ?????? |--Clustered Index Scan ?????? (OBJECT:([pubs].[dbo]. ?????? [sales].[UPKCL_sales]), ?????? ORDERED FORWARD) | ??????|--Concatenation ??????|--Index Scan ??????(OBJECT:([pubs].[dbo]. ?????? [big_sales].[ndx_sales_ttlID])) ??????|--Index Scan ??????(OBJECT:([pubs].[dbo]. ??????[sales].[titleidind])) |
??????UNION SOLUTION ??????----------------------- ??????Table 'sales'. Scan count 1, logical ??????reads 2, physical reads 0, ??????read-ahead reads 0. ??????Table 'big_sales'. Scan count 1, ??????logical ??????reads 463, physical reads 0, ??????read-ahead reads 0. | ??????UNION ALL SOLUTION ??????----------------------- ??????Table 'sales'. Scan count 1, logical ??????reads 1, physical reads 0, ??????read-ahead reads 0. ??????Table 'big_sales'. Scan count 1, ??????logical ??????reads 224, physical reads 0, ??????read-ahead reads 0. |
??????雖然在這個(gè)例子的結(jié)果集是可互換的,你可以看到UNION ALL語句比UNION語句少消耗一半的資源。所以應(yīng)當(dāng)預(yù)料你的結(jié)果集并且確定已經(jīng)沒有重復(fù)時(shí),使用UNION ALL子句。
??????函數(shù)和表達(dá)式約束索引
??????當(dāng)你在索引列上使用內(nèi)置的函數(shù)或表達(dá)式時(shí),優(yōu)化器不能使用這些列的索引。盡量重寫這些條件,在表達(dá)式中不要包含索引列。
??????示例
??????你應(yīng)該幫助SQL Server移除任何在索引數(shù)值列周圍的表達(dá)式。下面的查詢是從表jobs通過唯一的聚集索引的唯一鍵值選擇出的一行。如果你在這個(gè)列上使用表達(dá)式,這個(gè)索引就不起作用了。但一旦你將條件’job_id-2=0’ 該成‘job_id=2’,優(yōu)化器將在聚集索引上執(zhí)行seek操作。
??????QUERY WITH SUPPRESSED INDEX ??????----------------------- | ??????OPTIMIZED QUERY USING INDEX ??????----------------------- |
??????SELECT * ??????FROM jobs ??????WHERE (job_id-2) = 0 | ??????SELECT * ??????FROM jobs ??????WHERE job_id = 2 |
??????|--Clustered Index Scan(OBJECT: ??????([pubs].[dbo].[jobs]. ??????[PK__jobs__117F9D94]), ??????WHERE:(Convert([jobs].[job_id])- ??????2=0)) | ??????|--Clustered Index Seek(OBJECT: ??????([pubs].[dbo].[jobs]. ??????[PK__jobs__117F9D94]), ??????SEEK:([jobs].[job_id]=Convert([@1])) ??????ORDERED FORWARD) ??????Note that a SEEK is much better than a SCAN, ??????as in the previous query. |
??????下面表中列出了多種不同類型查詢示例,其被禁止使用列索引,同時(shí)給出改寫的方法,以獲得更優(yōu)的性能。
??????QUERY WITH SUPPRESSED INDEX ??????--------------------------------------- | ??????OPTIMIZED QUERY USING INDEX ??????-------------------------------------- |
??????DECLARE @job_id VARCHAR(5) ??????SELECT @job_id = ‘2’ ??????SELECT * ??????FROM jobs ??????WHERE CONVERT( VARCHAR(5), ??????job_id ) = @job_id ??????------------------------------- | ??????DECLARE @job_id VARCHAR(5) ??????SELECT @job_id = ‘2’ ??????SELECT * ??????FROM jobs ??????WHERE job_id = CONVERT( ??????SMALLINT, @job_id ) ??????------------------------------- |
??????SELECT * ??????FROM authors ??????WHERE au_fname + ' ' + au_lname ??????= 'Johnson White' ??????------------------------------- | ??????SELECT * ??????FROM authors ??????WHERE au_fname = 'Johnson' ??????AND au_lname = 'White' ??????------------------------------- |
??????SELECT * ??????FROM authors ??????WHERE SUBSTRING( au_lname, 1, 2 ) = 'Wh' ??????------------------------------- | ??????SELECT * ??????FROM authors ??????WHERE au_lname LIKE 'Wh%' ??????------------------------------- |
??????CREATE INDEX employee_hire_date ??????ON employee ( hire_date ) ??????GO ??????-- Get all employees hired ??????-- in the 1st quarter of 1990: ??????SELECT * ??????FROM employee ??????WHERE DATEPART( year, hire_date ) = 1990 ??????AND DATEPART( quarter, hire_date ) = 1 ??????------------------------------- | ??????CREATE INDEX employee_hire_date ??????ON employee ( hire_date ) ??????GO ??????-- Get all employees hired ??????-- in the 1st quarter of 1990: ??????SELECT * ??????FROM employee ??????WHERE hire_date >= ‘1/1/1990’ ??????AND hire_date < ‘4/1/1990’ ??????------------------------------- |
??????-- Suppose that hire_date may ??????-- contain time other than 12AM ??????-- Who was hired on 2/21/1990? ??????SELECT * ??????FROM employee ??????WHERE CONVERT( CHAR(10), ??????hire_date, 101 ) = ‘2/21/1990’ | ??????-- Suppose that hire_date may ??????-- contain time other than 12AM ??????-- Who was hired on 2/21/1990? ??????SELECT * ??????FROM employee ??????WHERE hire_date >= ‘2/21/1990’ ??????AND hire_date < ‘2/22/1990’ |
??????SET NOCOUNT ON
??????使用SET NOCOUNT ON 提高T-SQL代碼速度的現(xiàn)象使SQL Server開發(fā)者和數(shù)據(jù)庫系統(tǒng)管理者驚訝難解。你可能已經(jīng)注意到成功的查詢返回了關(guān)于受影響的行數(shù)的系統(tǒng)信息。在很多情況下,你不需要這些信息。這個(gè)SET NOCOUNT ON命令允許你禁止所有在你的會話事務(wù)中的子查詢的信息,直到你發(fā)出SET NOCOUNT OFF。
??????這個(gè)選項(xiàng)不只在于其輸出的裝飾效果。它減少了從服務(wù)器端到客戶端傳遞的信息量。因此,它幫助降低了網(wǎng)絡(luò)通信量并提高了你的事務(wù)整體響應(yīng)時(shí)間。傳遞單個(gè)信息的時(shí)間可以忽略,但考慮到這種情況,一個(gè)腳本在一個(gè)循環(huán)里執(zhí)行一些查詢并且發(fā)送好幾千字節(jié)無用的信息給用戶。
??????為做個(gè)例子,一個(gè)文件含T-SQL批處理,其在big_sales表插入了9999行。
??????當(dāng)帶SET NOCOUNT OFF命令運(yùn)行,實(shí)耗時(shí)間是5176毫秒。當(dāng)帶SET NOCOUNT ON命令運(yùn)行,實(shí)耗時(shí)間是1620毫秒。如果不需要輸出中的行數(shù)信息,考慮在每一個(gè)存儲過程和腳本開始時(shí)增加SET NOCOUNT ON 命令將。
??????TOP 和 SET ROWCOUNT
??????SELECT 語句中的TOP子句限制單個(gè)查詢返回的行數(shù),而SET ROWCOUNT限制所有后續(xù)查詢影響的行數(shù)。在很多編程任務(wù)中這些命令提供了高效率。
??????SET ROWCOUNT在SELECT,INSERT,UPDATE OR DELETE語句中設(shè)置可以被影響的最大行數(shù)。這些設(shè)置在命令執(zhí)行時(shí)馬上生效并且只影響當(dāng)前的會話。為了移除這個(gè)限制執(zhí)行SET ROWCOUNT 0。
一些實(shí)際的任務(wù)用TOP or SET ROWCOUNT比用標(biāo)準(zhǔn)的SQL命令對編程是更有效率的。讓我們在幾個(gè)例子中證明:
??????TOP n
??????在幾乎所有的數(shù)據(jù)庫中最流行的一個(gè)查詢是請求一個(gè)列表中的前N項(xiàng)。在 pubs數(shù)據(jù)庫案例中,我們可以查找銷售最好CD的前五項(xiàng)。比較用TOP,SET ROWCOUNT和使用ANSI SQL的三種方案。
??????純 ANSI SQL:
??????Select title,ytd_sales
??????From titles a
??????Where (select count(*)
??????From titles b
??????Where b.ytd_sales>a.ytd_sales
??????)<5
??????Order by ytd_sales DESC
??????這個(gè)純ANSI SQL方案執(zhí)行一個(gè)效率可能很低的關(guān)聯(lián)子查詢,特別的在這個(gè)例子中,在ytd_sales上沒有索引支持。另外,這個(gè)純的標(biāo)準(zhǔn)SQL命令沒有過濾掉在ytd_sales的空值,也沒有區(qū)別多個(gè)CD間有關(guān)聯(lián)的情況。
??????使用 SET ROWCOUNT:
??????SET ROWCOUNT 5
??????SELECT title, ytd_sales
??????FROM titles
??????ORDER BY ytd_sales DESC
??????SET ROWCOUNT 0
??????使用 TOP n:
??????SELECT TOP 5 title, ytd_sales
??????FROM titles
??????ORDER BY ytd_sales DESC
??????第二個(gè)方案使用SET ROWCOUNT來停止SELECT查詢,而第三個(gè)方案是當(dāng)它找到前五行時(shí)用TOP n來停止。在這種情況下,在獲得結(jié)果之前我們也要有一個(gè)ORDER BY子句強(qiáng)制對整個(gè)表進(jìn)行排序。兩個(gè)查詢的查詢計(jì)劃實(shí)際上是一樣的。然而,TOP優(yōu)于SET ROWCOUNT的關(guān)鍵點(diǎn)是SET必須處理ORDER BY子句所需的工作表,而TOP 不用。
??????在一個(gè)大表上,我們可以在ytd_sales上創(chuàng)建一個(gè)索引以避免排序。查詢將使用該索引找到前5行并停止。與第一個(gè)方案相比較,其掃描了整個(gè)表,并對每一行執(zhí)行了一個(gè)關(guān)聯(lián)子查詢。在小表上,性能的差異是很小的。但是在一個(gè)大表上,第一個(gè)方案的處理時(shí)間可能是數(shù)個(gè)小時(shí),而后兩個(gè)方法是數(shù)秒。
??????當(dāng)確定查詢需要時(shí),請考慮是否只需要其中幾行,如果是,使用TOP子句將節(jié)約大量時(shí)間。
???? (北京鑄銳數(shù)碼科技有限公司 www.InnovateDigital.com)


文章來源:http://21958978.spaces.live.com/Blog/cns!A7DF246804AD47BB!208.entry