(一)SVM的八股簡(jiǎn)介
支持向量機(jī)(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解決小樣本、非線性及高維模式識(shí)別中表現(xiàn)出許多特有的優(yōu)勢(shì),并能夠推廣應(yīng)用到函數(shù)擬合等其他機(jī)器學(xué)習(xí)問(wèn)題中[10]。
支持向量機(jī)方法是建立在統(tǒng)計(jì)學(xué)習(xí)理論的VC 維理論和結(jié)構(gòu)風(fēng)險(xiǎn)最小原理基礎(chǔ)上的,根據(jù)有限的樣本信息在模型的復(fù)雜性(即對(duì)特定訓(xùn)練樣本的學(xué)習(xí)精度,Accuracy)和學(xué)習(xí)能力(即無(wú)錯(cuò)誤地識(shí)別任意樣本的能力)之間尋求最佳折衷,以期獲得最好的推廣能力[14](或稱(chēng)泛化能力)。
以上是經(jīng)常被有關(guān)SVM 的學(xué)術(shù)文獻(xiàn)引用的介紹,有點(diǎn)八股,我來(lái)逐一分解并解釋一下。
Vapnik是統(tǒng)計(jì)機(jī)器學(xué)習(xí)的大牛,這想必都不用說(shuō),他出版的《Statistical Learning Theory》是一本完整闡述統(tǒng)計(jì)機(jī)器學(xué)習(xí)思想的名著。在該書(shū)中詳細(xì)的論證了統(tǒng)計(jì)機(jī)器學(xué)習(xí)之所以區(qū)別于傳統(tǒng)機(jī)器學(xué)習(xí)的本質(zhì),就在于統(tǒng)計(jì)機(jī)器學(xué)習(xí)能夠精確的給出學(xué)習(xí)效果,能夠解答需要的樣本數(shù)等等一系列問(wèn)題。與統(tǒng)計(jì)機(jī)器學(xué)習(xí)的精密思維相比,傳統(tǒng)的機(jī)器學(xué)習(xí)基本上屬于摸著石頭過(guò)河,用傳統(tǒng)的機(jī)器學(xué)習(xí)方法構(gòu)造分類(lèi)系統(tǒng)完全成了一種技巧,一個(gè)人做的結(jié)果可能很好,另一個(gè)人差不多的方法做出來(lái)卻很差,缺乏指導(dǎo)和原則。
所謂VC維是對(duì)函數(shù)類(lèi)的一種度量,可以簡(jiǎn)單的理解為問(wèn)題的復(fù)雜程度,VC維越高,一個(gè)問(wèn)題就越復(fù)雜。正是因?yàn)?/span>SVM關(guān)注的是VC維,后面我們可以看到,SVM解決問(wèn)題的時(shí)候,和樣本的維數(shù)是無(wú)關(guān)的(甚至樣本是上萬(wàn)維的都可以,這使得SVM很適合用來(lái)解決文本分類(lèi)的問(wèn)題,當(dāng)然,有這樣的能力也因?yàn)橐肓撕撕瘮?shù))。
結(jié)構(gòu)風(fēng)險(xiǎn)最小聽(tīng)上去文縐縐,其實(shí)說(shuō)的也無(wú)非是下面這回事。
機(jī)器學(xué)習(xí)本質(zhì)上就是一種對(duì)問(wèn)題真實(shí)模型的逼近(我們選擇一個(gè)我們認(rèn)為比較好的近似模型,這個(gè)近似模型就叫做一個(gè)假設(shè)),但毫無(wú)疑問(wèn),真實(shí)模型一定是不知道的(如果知道了,我們干嗎還要機(jī)器學(xué)習(xí)?直接用真實(shí)模型解決問(wèn)題不就可以了?對(duì)吧,哈哈)既然真實(shí)模型不知道,那么我們選擇的假設(shè)與問(wèn)題真實(shí)解之間究竟有多大差距,我們就沒(méi)法得知。比如說(shuō)我們認(rèn)為宇宙誕生于150億年前的一場(chǎng)大爆炸,這個(gè)假設(shè)能夠描述很多我們觀察到的現(xiàn)象,但它與真實(shí)的宇宙模型之間還相差多少?誰(shuí)也說(shuō)不清,因?yàn)槲覀儔焊筒恢勒鎸?shí)的宇宙模型到底是什么。
這個(gè)與問(wèn)題真實(shí)解之間的誤差,就叫做風(fēng)險(xiǎn)(更嚴(yán)格的說(shuō),誤差的累積叫做風(fēng)險(xiǎn))。我們選擇了一個(gè)假設(shè)之后(更直觀點(diǎn)說(shuō),我們得到了一個(gè)分類(lèi)器以后),真實(shí)誤差無(wú)從得知,但我們可以用某些可以掌握的量來(lái)逼近它。最直觀的想法就是使用分類(lèi)器在樣本數(shù)據(jù)上的分類(lèi)的結(jié)果與真實(shí)結(jié)果(因?yàn)闃颖臼且呀?jīng)標(biāo)注過(guò)的數(shù)據(jù),是準(zhǔn)確的數(shù)據(jù))之間的差值來(lái)表示。這個(gè)差值叫做經(jīng)驗(yàn)風(fēng)險(xiǎn)Remp(w)。以前的機(jī)器學(xué)習(xí)方法都把經(jīng)驗(yàn)風(fēng)險(xiǎn)最小化作為努力的目標(biāo),但后來(lái)發(fā)現(xiàn)很多分類(lèi)函數(shù)能夠在樣本集上輕易達(dá)到100%的正確率,在真實(shí)分類(lèi)時(shí)卻一塌糊涂(即所謂的推廣能力差,或泛化能力差)。此時(shí)的情況便是選擇了一個(gè)足夠復(fù)雜的分類(lèi)函數(shù)(它的VC維很高),能夠精確的記住每一個(gè)樣本,但對(duì)樣本之外的數(shù)據(jù)一律分類(lèi)錯(cuò)誤。回頭看看經(jīng)驗(yàn)風(fēng)險(xiǎn)最小化原則我們就會(huì)發(fā)現(xiàn),此原則適用的大前提是經(jīng)驗(yàn)風(fēng)險(xiǎn)要確實(shí)能夠逼近真實(shí)風(fēng)險(xiǎn)才行(行話叫一致),但實(shí)際上能逼近么?答案是不能,因?yàn)闃颖緮?shù)相對(duì)于現(xiàn)實(shí)世界要分類(lèi)的文本數(shù)來(lái)說(shuō)簡(jiǎn)直九牛一毛,經(jīng)驗(yàn)風(fēng)險(xiǎn)最小化原則只在這占很小比例的樣本上做到?jīng)]有誤差,當(dāng)然不能保證在更大比例的真實(shí)文本上也沒(méi)有誤差。
統(tǒng)計(jì)學(xué)習(xí)因此而引入了泛化誤差界的概念,就是指真實(shí)風(fēng)險(xiǎn)應(yīng)該由兩部分內(nèi)容刻畫(huà),一是經(jīng)驗(yàn)風(fēng)險(xiǎn),代表了分類(lèi)器在給定樣本上的誤差;二是置信風(fēng)險(xiǎn),代表了我們?cè)诙啻蟪潭壬峡梢孕湃畏诸?lèi)器在未知文本上分類(lèi)的結(jié)果。很顯然,第二部分是沒(méi)有辦法精確計(jì)算的,因此只能給出一個(gè)估計(jì)的區(qū)間,也使得整個(gè)誤差只能計(jì)算上界,而無(wú)法計(jì)算準(zhǔn)確的值(所以叫做泛化誤差界,而不叫泛化誤差)。
置信風(fēng)險(xiǎn)與兩個(gè)量有關(guān),一是樣本數(shù)量,顯然給定的樣本數(shù)量越大,我們的學(xué)習(xí)結(jié)果越有可能正確,此時(shí)置信風(fēng)險(xiǎn)越小;二是分類(lèi)函數(shù)的VC維,顯然VC維越大,推廣能力越差,置信風(fēng)險(xiǎn)會(huì)變大。
泛化誤差界的公式為:
R(w)≤Remp(w)+Ф(n/h)
公式中R(w)就是真實(shí)風(fēng)險(xiǎn),Remp(w)就是經(jīng)驗(yàn)風(fēng)險(xiǎn),Ф(n/h)就是置信風(fēng)險(xiǎn)。統(tǒng)計(jì)學(xué)習(xí)的目標(biāo)從經(jīng)驗(yàn)風(fēng)險(xiǎn)最小化變?yōu)榱藢で蠼?jīng)驗(yàn)風(fēng)險(xiǎn)與置信風(fēng)險(xiǎn)的和最小,即結(jié)構(gòu)風(fēng)險(xiǎn)最小。
SVM正是這樣一種努力最小化結(jié)構(gòu)風(fēng)險(xiǎn)的算法。
SVM其他的特點(diǎn)就比較容易理解了。
小樣本,并不是說(shuō)樣本的絕對(duì)數(shù)量少(實(shí)際上,對(duì)任何算法來(lái)說(shuō),更多的樣本幾乎總是能帶來(lái)更好的效果),而是說(shuō)與問(wèn)題的復(fù)雜度比起來(lái),SVM算法要求的樣本數(shù)是相對(duì)比較少的。
非線性,是指SVM擅長(zhǎng)應(yīng)付樣本數(shù)據(jù)線性不可分的情況,主要通過(guò)松弛變量(也有人叫懲罰變量)和核函數(shù)技術(shù)來(lái)實(shí)現(xiàn),這一部分是SVM的精髓,以后會(huì)詳細(xì)討論。多說(shuō)一句,關(guān)于文本分類(lèi)這個(gè)問(wèn)題究竟是不是線性可分的,尚沒(méi)有定論,因此不能簡(jiǎn)單的認(rèn)為它是線性可分的而作簡(jiǎn)化處理,在水落石出之前,只好先當(dāng)它是線性不可分的(反正線性可分也不過(guò)是線性不可分的一種特例而已,我們向來(lái)不怕方法過(guò)于通用)。
高維模式識(shí)別是指樣本維數(shù)很高,例如文本的向量表示,如果沒(méi)有經(jīng)過(guò)另一系列文章(《文本分類(lèi)入門(mén)》)中提到過(guò)的降維處理,出現(xiàn)幾萬(wàn)維的情況很正常,其他算法基本就沒(méi)有能力應(yīng)付了,SVM卻可以,主要是因?yàn)?/span>SVM 產(chǎn)生的分類(lèi)器很簡(jiǎn)潔,用到的樣本信息很少(僅僅用到那些稱(chēng)之為“支持向量”的樣本,此為后話),使得即使樣本維數(shù)很高,也不會(huì)給存儲(chǔ)和計(jì)算帶來(lái)大麻煩(相對(duì)照而言,kNN算法在分類(lèi)時(shí)就要用到所有樣本,樣本數(shù)巨大,每個(gè)樣本維數(shù)再一高,這日子就沒(méi)法過(guò)了……)。
下一節(jié)開(kāi)始正式討論SVM。別嫌我說(shuō)得太詳細(xì)哦。