期待了許久,終于等到Spring Integration 1.0的
正式發布。在些先祝賀一了Spring Source公司和Spring integration團隊。
下面是本人爭取第一時整理的學習筆記(針對最新版本)
先來看一下實際例子:
The Cafe Sample(小賣部訂餐例子)
小賣部有一個訂飲料服務,客戶可以通過訂單來訂購所需要飲料。小賣部提供兩種咖啡飲料
LATTE(拿鐵咖啡)和MOCHA(摩卡咖啡)。每種又都分冷飲和熱飲
整個流程如下:
1.有一個下訂單模塊,用戶可以按要求下一個或多個訂單。
2.有一個訂單處理模塊,處理訂單中那些是關于訂購飲料的。
3.有一個飲料訂購處理模塊,處理拆分訂購的具體是那些種類的飲料,把具體需要生產的飲料要求發給生產模塊
4.有一個生產模塊,進行生產。
5.等生成完成后,有一個訂單確認模塊(Waiter),把訂單的生成的飲料輸出。
這個例子利用Spring Integration實現了靈活的,可配置化的模式集成了上述這些服務模塊。
Spring Integration提供兩種模式的工作方式(Annotation和XML)
先來看一下XML方式,進行示例的開發:
配置文件如下:
<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:stream="http://www.springframework.org/schema/integration/stream"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/integration/stream
http://www.springframework.org/schema/integration/stream/spring-integration-stream-1.0.xsd">
<!-- 首先來配置一個GateWay組件,提供消息的發送和接收。接口Cafe,提供一個void placeOrder(Order order);方法
該方法標記了@Gateway(requestChannel="orders"), 實現向orders隊列實現數據的發送
-->
<gateway id="cafe" service-interface="org.springframework.integration.samples.cafe.Cafe"/>
<!-- 訂單Channel -->
<channel id="orders"/>
<!-- 實現Splitter模式, 接收 orders隊列的消息,調用orderSplitter Bean的split方法,進行消息的分解
并把分解后的消息,發送到drinks隊列.
-->
<splitter input-channel="orders" ref="orderSplitter" method="split" output-channel="drinks"/>
<!-- 飲料訂單Channel,處理飲料的類別 -->
<channel id="drinks"/>
<!-- 實現Router模式,接收 drinks隊列的消息, 并觸發 drinkRouter Bean的 resolveOrderItemChannel方法
由在 resolveOrderItemChannel該方法的返回值(String--隊列名稱)表示把消息路由到那個隊列上
-->
<router input-channel="drinks" ref="drinkRouter" method="resolveOrderItemChannel"/>
<!-- 冷飲生產Channel 最大待處理的數據量為 10-->
<channel id="coldDrinks">
<queue capacity="10"/>
</channel>
<!-- 定義一個服務處理器,其作用是定義一個消息接收隊列 codeDrinks,一但收到消息,則
觸發 barista Bean的 prepareColdDrink方法, 再把 prepareColdDrink方法的值,封成Message的
payLoad屬性,把消息再發送到preparedDrinks隊列, -->
<service-activator input-channel="coldDrinks" ref="barista"
method="prepareColdDrink" output-channel="preparedDrinks"/>
<!-- 熱飲生產Channel 最大待處理的數據量為 10-->
<channel id="hotDrinks">
<queue capacity="10"/>
</channel>
<!-- 定義一個服務處理器,其作用是定義一個消息接收隊列 hotDrinks,一但收到消息,則
觸發 barista Bean的 prepareHotDrink 再把 prepareColdDrink方法的值,封成Message的
payLoad屬性,把消息再發送到preparedDrinks隊列, -->
<service-activator input-channel="hotDrinks" ref="barista"
method="prepareHotDrink" output-channel="preparedDrinks"/>
<!-- 定義最終進行生產的消息隊列 -->
<channel id="preparedDrinks"/>
<!-- 實現 aggregator 模式, 接收 preparedDrinks 消息, 并觸發 waiter Bean的prepareDelivery方法
再把處理好的數據,發送到 deliveries隊列 -->
<aggregator input-channel="preparedDrinks" ref="waiter"
method="prepareDelivery" output-channel="deliveries"/>
<!-- 定義一個 stream 適配器,接收 deliveries隊列的消息后,直接輸出到屏幕-->
<stream:stdout-channel-adapter id="deliveries"/>
<beans:bean id="orderSplitter"
class="org.springframework.integration.samples.cafe.xml.OrderSplitter"/>
<beans:bean id="drinkRouter"
class="org.springframework.integration.samples.cafe.xml.DrinkRouter"/>
<beans:bean id="barista" class="org.springframework.integration.samples.cafe.xml.Barista"/>
<beans:bean id="waiter" class="org.springframework.integration.samples.cafe.xml.Waiter"/>
</beans:beans>
我們來看一下整體服務是怎么啟動的
首先我們來看一下CafeDemo這個類,它觸發下定單操作
org.springframework.integration.samples.cafe.xml.CafeDemo
1 public class CafeDemo {
2
3 public static void main(String[] args) {
4 ////加載Spring 配置文件 "cafeDemo.xml"
5 AbstractApplicationContext context = null;
6 if(args.length > 0) {
7 context = new FileSystemXmlApplicationContext(args);
8 }
9 else {
10 context = new ClassPathXmlApplicationContext("cafeDemo.xml", CafeDemo.class);
11 }
12 //取得 Cafe實列
13 Cafe cafe = (Cafe) context.getBean("cafe");
14 //準備 發送100條消息(訂單)
15 for (int i = 1; i <= 100; i++) {
16 Order order = new Order(i);
17 // 一杯熱飲 參數說明1.飲料類型 2.數量 3.是否是冷飲(true表示冷飲)
18 order.addItem(DrinkType.LATTE, 2, false);
19 // 一杯冷飲 參數說明1.飲料類型 2.數量 3.是否是冷飲(true表示冷飲)
20 order.addItem(DrinkType.MOCHA, 3, true);
21 //下發訂單,把消息發給 orders 隊列
22 cafe.placeOrder(order);
23 }
24 }
25
26 }
下面是Cafe接口的源代碼
public interface Cafe {
//定義GateWay, 把消息發送到 orders 隊列, Message的payLoad屬性,保存 order參數值
@Gateway(requestChannel="orders")
void placeOrder(Order order);
}
OrderSplitter 源代碼
1 public class OrderSplitter {
2
3 //接收 從 orders隊列接收的 order 消息后,調用 order.getItems方法
4 //進行訂單的分解, 返回的List<OrderItem>可會,被拆分為多個消息后(Message.payLoad),發到指定隊列
5 public List<OrderItem> split(Order order) {
6 return order.getItems();
7 }
8
9 }
10
OrderSplitter.split把消息拆分后,變成多個消息,發送到drinks隊列.由drinkRouter進行消息的接收。
1 public class DrinkRouter {
2
3 //從 drinks隊列的消息后,根據orderItem的屬性,選擇路由到不同的隊列 coldDrinks或hotDrinks
4 public String resolveOrderItemChannel(OrderItem orderItem) {
5 return (orderItem.isIced()) ? "coldDrinks" : "hotDrinks";
6 }
7
8 }
下面看一下,如果是一杯冷飲,則消息發送到 coldDrinks隊列
接收根據配置,由barista Bean的prepareColdDrink方法接收消息后,進行處理
如果是一杯熱飲,則消息發送到 hotDrinks隊列
接收根據配置,由barista Bean的prepareHotDrink方法接收消息后,進行處理
1 public class Barista {
2
3 private long hotDrinkDelay = 5000;
4
5 private long coldDrinkDelay = 1000;
6
7 private AtomicInteger hotDrinkCounter = new AtomicInteger();
8
9 private AtomicInteger coldDrinkCounter = new AtomicInteger();
10
11
12 public void setHotDrinkDelay(long hotDrinkDelay) {
13 this.hotDrinkDelay = hotDrinkDelay;
14 }
15
16 public void setColdDrinkDelay(long coldDrinkDelay) {
17 this.coldDrinkDelay = coldDrinkDelay;
18 }
19
20 //處理熱飲訂單,并生成Drink冷料
21 public Drink prepareHotDrink(OrderItem orderItem) {
22 try {
23 Thread.sleep(this.hotDrinkDelay);
24 System.out.println(Thread.currentThread().getName()
25 + " prepared hot drink #" + hotDrinkCounter.incrementAndGet() + " for order #"
26 + orderItem.getOrder().getNumber() + ": " + orderItem);
27 return new Drink(orderItem.getOrder().getNumber(), orderItem.getDrinkType(), orderItem.isIced(),
28 orderItem.getShots());
29 } catch (InterruptedException e) {
30 Thread.currentThread().interrupt();
31 return null;
32 }
33 }
34
35 //處理冷飲訂單,并生成Drink冷料
36 public Drink prepareColdDrink(OrderItem orderItem) {
37 try {
38 Thread.sleep(this.coldDrinkDelay);
39 System.out.println(Thread.currentThread().getName()
40 + " prepared cold drink #" + coldDrinkCounter.incrementAndGet() + " for order #"
41 + orderItem.getOrder().getNumber() + ": " + orderItem);
42 return new Drink(orderItem.getOrder().getNumber(), orderItem.getDrinkType(), orderItem.isIced(),
43 orderItem.getShots());
44 } catch (InterruptedException e) {
45 Thread.currentThread().interrupt();
46 return null;
47 }
48 }
49
50 }
接下來,已經把訂單需要生產的飲料已經完成,現在可以交給服務員(waier)交給客人了。
這里使用的aggregate模式,讓服務器等待這個訂單的所有飲料生產完后的,交給客戶.
下面來介紹該應用
<!-- 一旦定義了 aggregator,其會自動監測隊列的消息,把消息合并后再發生指定的隊列
一般aggregator的參照 splitter一起使用。Spring Integration會根據接收到的消息中的消息頭CORRELATION_ID 來判斷,如果有相同的CORRELATION_ID發現,則認為它們需要合成一組,并返回(如果沒有自定義合組接口)。
當然Spring Integration也提供一個用戶自定的接口來判定消息合組是否滿足要求
public interface CompletionStrategy {
boolean isComplete(List<Message<?>> messages);
}
isComplete的方法,收到的messages消息,都是擁用相同消息頭CORRELATION_ID的消息。
-->
<aggregator input-channel="preparedDrinks" ref="waiter"
method="prepareDelivery" output-channel="deliveries"/>
最后,完成訂單的消息會發到 waiter隊列
1 public class Waiter {
2
3 public Delivery prepareDelivery(List<Drink> drinks) {
4 return new Delivery(drinks);
5 }
6
7
8 }
9
10 public class Delivery {
11
12 private static final String SEPARATOR = "-----------------------";
13
14
15 private List<Drink> deliveredDrinks;
16
17 private int orderNumber;
18
19
20 public Delivery(List<Drink> deliveredDrinks) {
21 assert(deliveredDrinks.size() > 0);
22 this.deliveredDrinks = deliveredDrinks;
23 this.orderNumber = deliveredDrinks.get(0).getOrderNumber();
24 }
25
26
27 public int getOrderNumber() {
28 return orderNumber;
29 }
30
31 public List<Drink> getDeliveredDrinks() {
32 return deliveredDrinks;
33 }
34
35 @Override
36 public String toString() {
37 StringBuffer buffer = new StringBuffer(SEPARATOR + "\n");
38 buffer.append("Order #" + getOrderNumber() + "\n");
39 for (Drink drink : getDeliveredDrinks()) {
40 buffer.append(drink);
41 buffer.append("\n");
42 }
43 buffer.append(SEPARATOR + "\n");
44 return buffer.toString();
45 }
46
47 }
最后我們使用一個 stream channel adaptor把訂單生產完成的飲料輸出。
<!-- 定義一個 stream 適配器,接收 deliveries隊列的消息后,直接輸出到屏幕-->
<stream:stdout-channel-adapter id="deliveries"/>
這樣整個流程就執行完了,最終我們的飲料產品就按照訂單生產出來了。累了吧,喝咖啡提神著呢!!!
spring-integration官網:
http://www.springsource.org/spring-integration
關于 Annotation的介紹,將在
下篇介紹。
附:xml配置介紹
Service Activator 配置
1 <!--配置 Service Activator,接收exampleChannel隊列消息。注:exampleHandler至少有一個方法@ServiceActivator-->
2 <service-activator input-channel="exampleChannel" ref="exampleHandler"/>
3 <!-- 會檢查 someMethod方法,是否有 @ServiceActivato 標注 output-channel-->
4 <service-activator input-channel="exampleChannel" ref="somePojo" method="someMethod"/>
5 <service-activator input-channel="exampleChannel" output-channel="replyChannel"
6 ref="somePojo" method="someMethod"/>
<inbound-channel-adapter>
觸發指定的方法,接收消息隊列配置(觸發輪循訪問的方式)
1 <inbound-channel-adapter ref="source1" method="method1" channel="channel1">
2 <poller>
3 <interval-trigger interval="5000"/>
4 </poller>
5 </inbound-channel-adapter>
6
7 <inbound-channel-adapter ref="source2" method="method2" channel="channel2">
8 <poller>
9 <cron-trigger expression="30 * * * * MON-FRI"/>
10 </poller>
11 </channel-adapter>
<outbound-channel-adapter/>
觸發指定的方法,發送消息
1 <outbound-channel-adapter channel="channel1" ref="target1" method="method1"/>
2
3 <outbound-channel-adapter channel="channel2" ref="target2" method="method2">
4 <poller>
5 <interval-trigger interval="3000"/>
6 </poller>
7 </outbound-channel-adapter>
Router
消息路由方式
1 <bean id="payloadTypeRouter" class="org.springframework.integration.router.PayloadTypeRouter">
2 <property name="payloadTypeChannelMap">
3 <map>
4 <entry key="java.lang.String" value-ref="stringChannel"/>
5 <entry key="java.lang.Integer" value-ref="integerChannel"/>
6 </map>
7 </property>
8 </bean>
Aggregator 消息合并
1 <channel id="inputChannel"/>
2
3 <aggregator id="completelyDefinedAggregator" 1
4 input-channel="inputChannel" 2
5 output-channel="outputChannel" 3
6 discard-channel="discardChannel" 4
7 ref="aggregatorBean" 5
8 method="add" 6
9 completion-strategy="completionStrategyBean" 7
10 completion-strategy-method="checkCompleteness" 8
11 timeout="42" 9
12 send-partial-result-on-timeout="true" 10
13 reaper-interval="135" 11
14 tracked-correlation-id-capacity="99" 12
15 send-timeout="86420000" 13 />
16
17 <channel id="outputChannel"/>
18
19 <bean id="aggregatorBean" class="sample.PojoAggregator"/>
20
21 <bean id="completionStrategyBean" class="sample.PojoCompletionStrategy"/>
|
The id of the aggregator is
optional.
|
|
The input channel of the aggregator.
Required.
|
|
The channel where the aggregator will send the aggregation
results. Optional (because incoming messages can specify a
reply channel themselves).
|
|
The channel where the aggregator will send the messages that
timed out (if send-partial-results-on-timeout is
false). Optional.
|
|
A reference to a bean defined in the application context. The
bean must implement the aggregation logic as described above.
Required.
|
|
A method defined on the bean referenced by ref ,
that implements the message aggregation
algorithm. Optional, with restrictions (see
above).
|
|
A reference to a bean that implements the decision algorithm as
to whether a given message group is complete. The bean can be an
implementation of the CompletionStrategy interface or a POJO. In the
latter case the completion-strategy-method attribute must be defined
as well. Optional (by default, the aggregator
.
|
|
A method defined on the bean referenced by
completion-strategy , that implements
the completion decision algorithm. Optional, with
restrictions (requires completion-strategy to be
present).
|
|
The timeout for aggregating messages (counted from the arrival
of the first message). Optional.
|
|
Whether upon the expiration of the timeout, the aggregator shall
try to aggregate the already arrived messages. Optional
(false by default).
|
|
The interval (in milliseconds) at which a reaper task is
executed, checking if there are any timed out groups.
Optional.
|
|
The capacity of the correlation id tracker. Remembers the
already processed correlation ids, preventing the formation of new
groups for messages that arrive after their group has been already
processed (aggregated or discarded).
Optional.
|
|
The timeout for sending out messages.
Optional.
|
配置消息合并策略
1 public class PojoCompletionStrategy {
2 
3 public boolean checkCompleteness(List<Long> numbers) {
4 int sum = 0;
5 for (long number: numbers) {
6 sum += number;
7 }
8 return sum >= maxValue;
9 }
10 }
Good Luck!
Yours Matthew!