<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    posts - 97,  comments - 93,  trackbacks - 0
    Problem Statement

    Let's say you have a binary string such as the following:
    011100011
    One way to encrypt this string is to add to each digit the sum of its adjacent digits. For example, the above string would become:
    123210122
    In particular, if P is the original string, and Q is the encrypted string, then Q[i] = P[i-1] + P[i] + P[i+1] for all digit positions i. Characters off the left and right edges of the string are treated as zeroes.
    An encrypted string given to you in this format can be decoded as follows (using 123210122 as an example):
    Assume P[0] = 0.
    Because Q[0] = P[0] + P[1] = 0 + P[1] = 1, we know that P[1] = 1.
    Because Q[1] = P[0] + P[1] + P[2] = 0 + 1 + P[2] = 2, we know that P[2] = 1.
    Because Q[2] = P[1] + P[2] + P[3] = 1 + 1 + P[3] = 3, we know that P[3] = 1.
    Repeating these steps gives us P[4] = 0, P[5] = 0, P[6] = 0, P[7] = 1, and P[8] = 1.
    We check our work by noting that Q[8] = P[7] + P[8] = 1 + 1 = 2. Since this equation works out, we are finished, and we have recovered one possible original string.
    Now we repeat the process, assuming the opposite about P[0]:
    Assume P[0] = 1.
    Because Q[0] = P[0] + P[1] = 1 + P[1] = 0, we know that P[1] = 0.
    Because Q[1] = P[0] + P[1] + P[2] = 1 + 0 + P[2] = 2, we know that P[2] = 1.
    Now note that Q[2] = P[1] + P[2] + P[3] = 0 + 1 + P[3] = 3, which leads us to the conclusion that P[3] = 2. However, this violates the fact that each character in the original string must be '0' or '1'. Therefore, there exists no such original string P where the first digit is '1'.
    Note that this algorithm produces at most two decodings for any given encrypted string. There can never be more than one possible way to decode a string once the first binary digit is set.
    Given a String message, containing the encrypted string, return a String[] with exactly two elements. The first element should contain the decrypted string assuming the first character is '0'; the second element should assume the first character is '1'. If one of the tests fails, return the string "NONE" in its place. For the above example, you should return {"011100011", "NONE"}.
    Definition

    Class:
    BinaryCode
    Method:
    decode
    Parameters:
    String
    Returns:
    String[]
    Method signature:
    String[] decode(String message)
    (be sure your method is public)


    Constraints
    -
    message will contain between 1 and 50 characters, inclusive.
    -
    Each character in message will be either '0', '1', '2', or '3'.
    Examples
    0)

    "123210122"
    Returns: { "011100011",  "NONE" }
    The example from above.
    1)

    "11"
    Returns: { "01",  "10" }
    We know that one of the digits must be '1', and the other must be '0'. We return both cases.
    2)

    "22111"
    Returns: { "NONE",  "11001" }
    Since the first digit of the encrypted string is '2', the first two digits of the original string must be '1'. Our test fails when we try to assume that P[0] = 0.
    3)

    "123210120"
    Returns: { "NONE",  "NONE" }
    This is the same as the first example, but the rightmost digit has been changed to something inconsistent with the rest of the original string. No solutions are possible.
    4)

    "3"
    Returns: { "NONE",  "NONE" }

    5)

    "12221112222221112221111111112221111"
    Returns:
    { "01101001101101001101001001001101001",
      "10110010110110010110010010010110010" }

    This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.
     1 /**
     2  *
     3  * @author Nicky Qu
     4  * All Rights Reserved. Oct.23th,2007.
     5  */
     6 public class BinaryCode {
     7 
     8     private char[] temp;
     9     private String originalCode0="00";
    10     private String originalCode1="01";
    11 
    12     public String[] decode(String message) {
    13         temp = message.toCharArray();
    14          originalCode0 = Run(temp,originalCode0);
    15          originalCode1 = Run(temp,originalCode1);
    16         return new String[]{originalCode0,originalCode1};
    17     }
    18 
    19     private String Run(char[] temp,String deEncryptedCode) {
    20         int p_i = 0,p_i_1 = 0;
    21         int p_i_add_1 = 0;
    22       for(int i =0;i<temp.length;i++){
    23           p_i_1 =  Character.getNumericValue(deEncryptedCode.charAt(i));
    24           p_i =  Character.getNumericValue(deEncryptedCode.charAt(i+1));
    25           p_i_add_1 =Character.getNumericValue(temp[i]) - p_i - p_i_1;
    26           boolean just = (i==temp.length-1&& (p_i_add_1 != 0);
    27           if(p_i_add_1 < 0||p_i_add_1>2||just){
    28               return "NONE";
    29           }              
    30           deEncryptedCode = deEncryptedCode+ p_i_add_1;          
    31       }
    32         return deEncryptedCode.substring(1,deEncryptedCode.length()-1);
    33     }
    34 }

    posted on 2007-10-23 13:34 wqwqwqwqwq 閱讀(1056) 評論(1)  編輯  收藏 所屬分類: Data Structure && Algorithm

    FeedBack:
    # re: A Q of Encrypting String
    2007-10-23 19:57 | 曲強(qiáng) Nicky
    public class BinaryCode {

    private String[] result;
    private int[] q;
    private int[] p;

    public String[] decode(String message) {
    result = new String[]{"", ""};
    q = new int[message.length()];
    for (int i = 0; i < q.length; i++) {
    q[i] = Integer.parseInt(String.valueOf(message.charAt(i)));
    }
    for (int j = 0; j < 2; j++) {
    p = new int[q.length];
    p[0] = j;
    result[j] += p[0];
    for (int i = 1; i < q.length; i++) {
    if (i == 1) {
    p[1] = q[0] - p[0];
    } else {
    p[i] = q[i - 1] - p[i - 2] - p[i - 1];
    }
    if (p[i] > 1 || p[i] < 0) {
    result[j] = "NONE";
    break;
    }
    result[j] += p[i];
    }
    for (int i = 0; i < p.length; i++) {
    if (i == 0 && i == p.length - 1) {
    if (p[i] != q[i]) {
    result[j] = "NONE";
    break;
    }
    } else if (i == 0) {
    if (0 + p[i] + p[i + 1] != q[i]) {
    result[j] = "NONE";
    break;
    }
    } else if (i == p.length - 1) {
    if (p[i - 1] + p[i] + 0 != q[i]) {
    result[j] = "NONE";
    break;
    }
    } else {
    if (p[i - 1] + p[i] + p[i + 1] != q[i]) {
    result[j] = "NONE";
    break;
    }
    }
    }
    }
    return result;
    }
    }  回復(fù)  更多評論
      
    <2007年10月>
    30123456
    78910111213
    14151617181920
    21222324252627
    28293031123
    45678910




    常用鏈接

    留言簿(10)

    隨筆分類(95)

    隨筆檔案(97)

    文章檔案(10)

    相冊

    J2ME技術(shù)網(wǎng)站

    java技術(shù)相關(guān)

    mess

    搜索

    •  

    最新評論

    閱讀排行榜

    校園夢網(wǎng)網(wǎng)絡(luò)電話,中國最優(yōu)秀的網(wǎng)絡(luò)電話
    主站蜘蛛池模板: 四虎免费久久影院| 亚洲小说区图片区| 最近中文字幕大全中文字幕免费| 亚洲国产成人va在线观看网址| 免费无码看av的网站| 大地影院MV在线观看视频免费 | 四虎亚洲国产成人久久精品 | 国产成人精品免费午夜app| 亚洲成在人线在线播放无码| 亚洲精品tv久久久久久久久| 大地资源在线观看免费高清| 免费精品一区二区三区第35| 美女无遮挡免费视频网站| 色播亚洲视频在线观看| 亚洲成?Ⅴ人在线观看无码| 99re热免费精品视频观看| 久久精品成人免费看| 亚洲AV无码之国产精品| 亚洲精品美女在线观看| 国产亚洲精品自在线观看| 搡女人免费视频大全| 91禁漫免费进入| 精品熟女少妇aⅴ免费久久| 亚洲av午夜国产精品无码中文字| 亚洲精品高清国产一久久| 久久久久亚洲AV综合波多野结衣 | 一级黄色免费大片| 亚洲色在线无码国产精品不卡| 久久久无码精品亚洲日韩蜜桃| 亚洲国产一区二区视频网站| 成年女人男人免费视频播放 | 午夜老司机免费视频| 久久免费精彩视频| 99在线免费视频| 一级特黄色毛片免费看| 亚洲欧美在线x视频| 亚洲精品精华液一区二区| 国产精品亚洲自在线播放页码 | 久久久久国产精品免费看| 久久不见久久见免费影院www日本| 人人狠狠综合久久亚洲|