<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    posts - 97,  comments - 93,  trackbacks - 0
    Problem Statement

    Let's say you have a binary string such as the following:
    011100011
    One way to encrypt this string is to add to each digit the sum of its adjacent digits. For example, the above string would become:
    123210122
    In particular, if P is the original string, and Q is the encrypted string, then Q[i] = P[i-1] + P[i] + P[i+1] for all digit positions i. Characters off the left and right edges of the string are treated as zeroes.
    An encrypted string given to you in this format can be decoded as follows (using 123210122 as an example):
    Assume P[0] = 0.
    Because Q[0] = P[0] + P[1] = 0 + P[1] = 1, we know that P[1] = 1.
    Because Q[1] = P[0] + P[1] + P[2] = 0 + 1 + P[2] = 2, we know that P[2] = 1.
    Because Q[2] = P[1] + P[2] + P[3] = 1 + 1 + P[3] = 3, we know that P[3] = 1.
    Repeating these steps gives us P[4] = 0, P[5] = 0, P[6] = 0, P[7] = 1, and P[8] = 1.
    We check our work by noting that Q[8] = P[7] + P[8] = 1 + 1 = 2. Since this equation works out, we are finished, and we have recovered one possible original string.
    Now we repeat the process, assuming the opposite about P[0]:
    Assume P[0] = 1.
    Because Q[0] = P[0] + P[1] = 1 + P[1] = 0, we know that P[1] = 0.
    Because Q[1] = P[0] + P[1] + P[2] = 1 + 0 + P[2] = 2, we know that P[2] = 1.
    Now note that Q[2] = P[1] + P[2] + P[3] = 0 + 1 + P[3] = 3, which leads us to the conclusion that P[3] = 2. However, this violates the fact that each character in the original string must be '0' or '1'. Therefore, there exists no such original string P where the first digit is '1'.
    Note that this algorithm produces at most two decodings for any given encrypted string. There can never be more than one possible way to decode a string once the first binary digit is set.
    Given a String message, containing the encrypted string, return a String[] with exactly two elements. The first element should contain the decrypted string assuming the first character is '0'; the second element should assume the first character is '1'. If one of the tests fails, return the string "NONE" in its place. For the above example, you should return {"011100011", "NONE"}.
    Definition

    Class:
    BinaryCode
    Method:
    decode
    Parameters:
    String
    Returns:
    String[]
    Method signature:
    String[] decode(String message)
    (be sure your method is public)


    Constraints
    -
    message will contain between 1 and 50 characters, inclusive.
    -
    Each character in message will be either '0', '1', '2', or '3'.
    Examples
    0)

    "123210122"
    Returns: { "011100011",  "NONE" }
    The example from above.
    1)

    "11"
    Returns: { "01",  "10" }
    We know that one of the digits must be '1', and the other must be '0'. We return both cases.
    2)

    "22111"
    Returns: { "NONE",  "11001" }
    Since the first digit of the encrypted string is '2', the first two digits of the original string must be '1'. Our test fails when we try to assume that P[0] = 0.
    3)

    "123210120"
    Returns: { "NONE",  "NONE" }
    This is the same as the first example, but the rightmost digit has been changed to something inconsistent with the rest of the original string. No solutions are possible.
    4)

    "3"
    Returns: { "NONE",  "NONE" }

    5)

    "12221112222221112221111111112221111"
    Returns:
    { "01101001101101001101001001001101001",
      "10110010110110010110010010010110010" }

    This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.
     1 /**
     2  *
     3  * @author Nicky Qu
     4  * All Rights Reserved. Oct.23th,2007.
     5  */
     6 public class BinaryCode {
     7 
     8     private char[] temp;
     9     private String originalCode0="00";
    10     private String originalCode1="01";
    11 
    12     public String[] decode(String message) {
    13         temp = message.toCharArray();
    14          originalCode0 = Run(temp,originalCode0);
    15          originalCode1 = Run(temp,originalCode1);
    16         return new String[]{originalCode0,originalCode1};
    17     }
    18 
    19     private String Run(char[] temp,String deEncryptedCode) {
    20         int p_i = 0,p_i_1 = 0;
    21         int p_i_add_1 = 0;
    22       for(int i =0;i<temp.length;i++){
    23           p_i_1 =  Character.getNumericValue(deEncryptedCode.charAt(i));
    24           p_i =  Character.getNumericValue(deEncryptedCode.charAt(i+1));
    25           p_i_add_1 =Character.getNumericValue(temp[i]) - p_i - p_i_1;
    26           boolean just = (i==temp.length-1&& (p_i_add_1 != 0);
    27           if(p_i_add_1 < 0||p_i_add_1>2||just){
    28               return "NONE";
    29           }              
    30           deEncryptedCode = deEncryptedCode+ p_i_add_1;          
    31       }
    32         return deEncryptedCode.substring(1,deEncryptedCode.length()-1);
    33     }
    34 }

    posted on 2007-10-23 13:34 wqwqwqwqwq 閱讀(1061) 評論(1)  編輯  收藏 所屬分類: Data Structure && Algorithm

    FeedBack:
    # re: A Q of Encrypting String
    2007-10-23 19:57 | 曲強 Nicky
    public class BinaryCode {

    private String[] result;
    private int[] q;
    private int[] p;

    public String[] decode(String message) {
    result = new String[]{"", ""};
    q = new int[message.length()];
    for (int i = 0; i < q.length; i++) {
    q[i] = Integer.parseInt(String.valueOf(message.charAt(i)));
    }
    for (int j = 0; j < 2; j++) {
    p = new int[q.length];
    p[0] = j;
    result[j] += p[0];
    for (int i = 1; i < q.length; i++) {
    if (i == 1) {
    p[1] = q[0] - p[0];
    } else {
    p[i] = q[i - 1] - p[i - 2] - p[i - 1];
    }
    if (p[i] > 1 || p[i] < 0) {
    result[j] = "NONE";
    break;
    }
    result[j] += p[i];
    }
    for (int i = 0; i < p.length; i++) {
    if (i == 0 && i == p.length - 1) {
    if (p[i] != q[i]) {
    result[j] = "NONE";
    break;
    }
    } else if (i == 0) {
    if (0 + p[i] + p[i + 1] != q[i]) {
    result[j] = "NONE";
    break;
    }
    } else if (i == p.length - 1) {
    if (p[i - 1] + p[i] + 0 != q[i]) {
    result[j] = "NONE";
    break;
    }
    } else {
    if (p[i - 1] + p[i] + p[i + 1] != q[i]) {
    result[j] = "NONE";
    break;
    }
    }
    }
    }
    return result;
    }
    }  回復  更多評論
      
    <2007年10月>
    30123456
    78910111213
    14151617181920
    21222324252627
    28293031123
    45678910




    常用鏈接

    留言簿(10)

    隨筆分類(95)

    隨筆檔案(97)

    文章檔案(10)

    相冊

    J2ME技術網站

    java技術相關

    mess

    搜索

    •  

    最新評論

    閱讀排行榜

    校園夢網網絡電話,中國最優秀的網絡電話
    主站蜘蛛池模板: 亚洲欧洲日产国码高潮αv| 波多野结衣久久高清免费 | jizz中国免费| 免费一级成人毛片| 女人裸身j部免费视频无遮挡| 免费日本黄色网址| 国产亚洲漂亮白嫩美女在线| 亚洲av无码乱码在线观看野外| 羞羞的视频在线免费观看| 亚洲精品成人久久久| 成人无码视频97免费| 日本亚洲成高清一区二区三区| 久久99热精品免费观看牛牛| 97久久精品亚洲中文字幕无码 | 91麻豆国产免费观看| 亚洲自偷精品视频自拍| 无码专区永久免费AV网站| 亚洲大尺度无码无码专线一区| 日本无卡码免费一区二区三区| 精品一区二区三区免费毛片| 中文字幕中韩乱码亚洲大片| 美女在线视频观看影院免费天天看 | 国产性生大片免费观看性| 亚洲AV无码乱码在线观看裸奔| 99视频免费观看| 亚洲精品国产首次亮相| 亚洲av无码专区在线观看素人| 中文字幕看片在线a免费| 亚洲精品福利在线观看| 免费黄色app网站| 国产免费一级高清淫曰本片| 在线免费观看亚洲| 国产网站免费观看| 日韩精品在线免费观看| 亚洲宅男天堂a在线| 国产乱子伦精品免费女| 无码免费一区二区三区免费播放 | 久久精品国产亚洲AV香蕉| 热99re久久精品精品免费| 在线观看免费播放av片| 亚洲日韩AV无码一区二区三区人|