<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    posts - 495,comments - 227,trackbacks - 0
    http://www.tkk7.com/yongboy/archive/2012/04/26/376486.html

    插件

    話說Hadoop 1.0.2/src/contrib/eclipse-plugin只有插件的源代碼,這里給出一個我打包好的對應的Eclipse插件:
    下載地址

    下載后扔到eclipse/dropins目錄下即可,當然eclipse/plugins也是可以的,前者更為輕便,推薦;重啟Eclipse,即可在透視圖(Perspective)中看到Map/Reduce。

    配置

    點擊藍色的小象圖標,新建一個Hadoop連接:

    2

    注意,一定要填寫正確,修改了某些端口,以及默認運行的用戶名等

    具體的設置,可見

    正常情況下,可以在項目區域可以看到

    image

    這樣可以正常的進行HDFS分布式文件系統的管理:上傳,刪除等操作。

    為下面測試做準備,需要先建了一個目錄 user/root/input2,然后上傳兩個txt文件到此目錄:

    intput1.txt 對應內容:Hello Hadoop Goodbye Hadoop

    intput2.txt 對應內容:Hello World Bye World

    HDFS的準備工作好了,下面可以開始測試了。

    Hadoop工程

    新建一個Map/Reduce Project工程,設定好本地的hadoop目錄

    1

    新建一個測試類WordCountTest:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    package com.hadoop.learn.test;
     
    import java.io.IOException;
    import java.util.StringTokenizer;
     
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;
    import org.apache.log4j.Logger;
     
    /**
    * 運行測試程序
    *
    * @author yongboy
    * @date 2012-04-16
    */
    public class WordCountTest {
    private static final Logger log = Logger.getLogger(WordCountTest.class);
     
    public static class TokenizerMapper extends
    Mapper<Object, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
     
    public void map(Object key, Text value, Context context)
    throws IOException, InterruptedException {
    log.info("Map key : " + key);
    log.info("Map value : " + value);
    StringTokenizer itr = new StringTokenizer(value.toString());
    while (itr.hasMoreTokens()) {
    String wordStr = itr.nextToken();
    word.set(wordStr);
    log.info("Map word : " + wordStr);
    context.write(word, one);
    }
    }
    }
     
    public static class IntSumReducer extends
    Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable result = new IntWritable();
     
    public void reduce(Text key, Iterable<IntWritable> values,
    Context context) throws IOException, InterruptedException {
    log.info("Reduce key : " + key);
    log.info("Reduce value : " + values);
    int sum = 0;
    for (IntWritable val : values) {
    sum += val.get();
    }
    result.set(sum);
    log.info("Reduce sum : " + sum);
    context.write(key, result);
    }
    }
     
    public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args)
    .getRemainingArgs();
    if (otherArgs.length != 2) {
    System.err.println("Usage: WordCountTest <in> <out>");
    System.exit(2);
    }
     
    Job job = new Job(conf, "word count");
    job.setJarByClass(WordCountTest.class);
     
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
     
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
     
    System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
    }

    右鍵,選擇“Run Configurations”,彈出窗口,點擊“Arguments”選項卡,在“Program argumetns”處預先輸入參數:

    hdfs://master:9000/user/root/input2 dfs://master:9000/user/root/output2

    備注:參數為了在本地調試使用,而非真實環境。

    然后,點擊“Apply”,然后“Close”。現在可以右鍵,選擇“Run on Hadoop”,運行。

    但此時會出現類似異常信息:

    12/04/24 15:32:44 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    12/04/24 15:32:44 ERROR security.UserGroupInformation: PriviledgedActionException as:Administrator cause:java.io.IOException: Failed to set permissions of path: \tmp\hadoop-Administrator\mapred\staging\Administrator-519341271\.staging to 0700
    Exception in thread "main" java.io.IOException: Failed to set permissions of path: \tmp\hadoop-Administrator\mapred\staging\Administrator-519341271\.staging to 0700
        at org.apache.hadoop.fs.FileUtil.checkReturnValue(FileUtil.java:682)
        at org.apache.hadoop.fs.FileUtil.setPermission(FileUtil.java:655)
        at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:509)
        at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:344)
        at org.apache.hadoop.fs.FilterFileSystem.mkdirs(FilterFileSystem.java:189)
        at org.apache.hadoop.mapreduce.JobSubmissionFiles.getStagingDir(JobSubmissionFiles.java:116)
        at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:856)
        at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:850)
        at java.security.AccessController.doPrivileged(Native Method)
        at javax.security.auth.Subject.doAs(Subject.java:396)
        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1093)
        at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:850)
        at org.apache.hadoop.mapreduce.Job.submit(Job.java:500)
        at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:530)
        at com.hadoop.learn.test.WordCountTest.main(WordCountTest.java:85)

    這個是Windows下文件權限問題,在Linux下可以正常運行,不存在這樣的問題。

    解決方法是,修改/hadoop-1.0.2/src/core/org/apache/hadoop/fs/FileUtil.java里面的checkReturnValue,注釋掉即可(有些粗暴,在Window下,可以不用檢查):

    1 2 3 4 5 6 7 8 9 10 11 12 13
    ......
    private static void checkReturnValue(boolean rv, File p,
    FsPermission permission
    ) throws IOException {
    /**
    if (!rv) {
    throw new IOException("Failed to set permissions of path: " + p +
    " to " +
    String.format("%04o", permission.toShort()));
    }
    **/
    }
    ......
    view raw FileUtil.java This Gist brought to you by GitHub.

    重新編譯打包hadoop-core-1.0.2.jar,替換掉hadoop-1.0.2根目錄下的hadoop-core-1.0.2.jar即可。

    這里提供一份修改版的hadoop-core-1.0.2-modified.jar文件,替換原hadoop-core-1.0.2.jar即可。

    替換之后,刷新項目,設置好正確的jar包依賴,現在再運行WordCountTest,即可。

    成功之后,在Eclipse下刷新HDFS目錄,可以看到生成了ouput2目錄:

    image

    點擊“ part-r-00000”文件,可以看到排序結果:

    Bye    1
    Goodbye    1
    Hadoop    2
    Hello    2
    World    2

    嗯,一樣可以正常Debug調試該程序,設置斷點(右鍵 –> Debug As – > Java Application),即可(每次運行之前,都需要收到刪除輸出目錄)。

    另外,該插件會在eclipse對應的workspace\.metadata\.plugins\org.apache.hadoop.eclipse下,自動生成jar文件,以及其他文件,包括Haoop的一些具體配置等。

    嗯,更多細節,慢慢體驗吧。

    遇到的異常

    org.apache.hadoop.ipc.RemoteException: org.apache.hadoop.hdfs.server.namenode.SafeModeException: Cannot create directory /user/root/output2/_temporary. Name node is in safe mode.
    The ratio of reported blocks 0.5000 has not reached the threshold 0.9990. Safe mode will be turned off automatically.
        at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirsInternal(FSNamesystem.java:2055)
        at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:2029)
        at org.apache.hadoop.hdfs.server.namenode.NameNode.mkdirs(NameNode.java:817)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
        at java.lang.reflect.Method.invoke(Method.java:597)
        at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:563)
        at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1388)
        at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1384)
        at java.security.AccessController.doPrivileged(Native Method)
        at javax.security.auth.Subject.doAs(Subject.java:396)
        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1093)
        at org.apache.hadoop.ipc.Server$Handler.run(Server.java:1382)

    在主節點處,關閉掉安全模式:

    #bin/hadoop dfsadmin –safemode leave

    如何打包

    將創建的Map/Reduce項目打包成jar包,很簡單的事情,無需多言。保證jar文件的META-INF/MANIFEST.MF文件中存在Main-Class映射:

    Main-Class: com.hadoop.learn.test.TestDriver

    若使用到第三方jar包,那么在MANIFEST.MF中增加Class-Path好了。

    另外可使用插件提供的MapReduce Driver向導,可以幫忙我們在Hadoop中運行,直接指定別名,尤其是包含多個Map/Reduce作業時,很有用。

    一個MapReduce Driver只要包含一個main函數,指定別名:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
    package com.hadoop.learn.test;
     
    import org.apache.hadoop.util.ProgramDriver;
     
    /**
    *
    * @author yongboy
    * @time 2012-4-24
    * @version 1.0
    */
    public class TestDriver {
     
    public static void main(String[] args) {
    int exitCode = -1;
    ProgramDriver pgd = new ProgramDriver();
    try {
    pgd.addClass("testcount", WordCountTest.class,
    "A test map/reduce program that counts the words in the input files.");
    pgd.driver(args);
     
    exitCode = 0;
    } catch (Throwable e) {
    e.printStackTrace();
    }
     
    System.exit(exitCode);
    }
    }

    這里有一個小技巧,MapReduce Driver類上面,右鍵運行,Run on Hadoop,會在Eclipse的workspace\.metadata\.plugins\org.apache.hadoop.eclipse目 錄下自動生成jar包,上傳到HDFS,或者遠程hadoop根目錄下,運行它:

    # bin/hadoop jar LearnHadoop_TestDriver.java-460881982912511899.jar testcount input2 output3

    OK,本文結束。

    posted on 2013-02-22 14:06 SIMONE 閱讀(3261) 評論(1)  編輯  收藏 所屬分類: hbase

    FeedBack:
    # re: Hadoop學習筆記之在Eclipse中遠程調試Hadoop
    2013-05-21 09:06 | vigiles
    你好!
    請問如何重新編譯打包hadoop-core-1.0.2.jar?  回復  更多評論
      
    主站蜘蛛池模板: 国产成人无码免费网站| 久久免费视频精品| 亚洲韩国精品无码一区二区三区| 在线观看免费无码视频| 亚洲精品电影天堂网| 国产精品免费视频一区| 热99RE久久精品这里都是精品免费| 亚洲国产日韩在线成人蜜芽 | 免费v片在线观看无遮挡| 99久久免费国产精品热| 中文字幕无码亚洲欧洲日韩| 精品亚洲一区二区三区在线观看 | 中国性猛交xxxxx免费看| 亚洲成人黄色在线| 综合久久久久久中文字幕亚洲国产国产综合一区首 | 亚洲成a人在线看天堂无码| 免费国产黄网站在线观看| 国产精品亚洲专区在线播放 | 精品国产日韩亚洲一区在线| 亚洲精品福利视频| 全部免费国产潢色一级| 18pao国产成视频永久免费| www在线观看免费视频| 亚洲免费网站观看视频| 亚洲视频一区在线| 国产亚洲精品免费视频播放| 日韩特黄特色大片免费视频| 69视频在线是免费观看| 巨胸喷奶水www永久免费 | 最近免费中文字幕大全视频 | 亚洲日韩v无码中文字幕| 国产在线98福利播放视频免费| 最近2019中文字幕免费大全5 | 日本在线高清免费爱做网站| 东方aⅴ免费观看久久av| 男人和女人高潮免费网站| 亚洲av纯肉无码精品动漫| 亚洲国产区男人本色在线观看| 亚洲国产综合专区电影在线| 亚洲日韩精品无码专区网址| 久久久亚洲精品蜜桃臀|