<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    posts - 1,  comments - 0,  trackbacks - 0

    Hadamard product (matrices)

    In mathematics, the Hadamard product is a binary operation that takes two matrices of the same dimensions, and produces another matrix where each element ij is the product of elements ij of the original two matrices. It should not be confused with the more common matrix product.

    The Hadamard product is associative and distributive, and unlike the matrix product it is also commutative. The Hadamard product is named after French mathematician Jacques Hadamard), and is also known as the entrywise product and the Schur product.[1]

    Definition 

    Formally, for two matrices of the same dimensions

    A, B \in {\mathbb R}^{m \times n}

    the Hadamard product A ○ B is a matrix of the same dimensions

    A \circ B \in {\mathbb R}^{m \times n},

    with elements given by

    (A \circ B)_{i,j} = (A)_{i,j} \cdot (B)_{i,j}.

    The Hadamard product is commutative, associative and distributive over addition. That is,

    A \circ B = B \circ A,
    A \circ (B \circ C) = (A \circ B) \circ C,
    A \circ (B + C) = A \circ B + A \circ C.

    The identity matrix under Hadamard multiplication of two m-by-n matrices is m-by-n matrix where all elements are equal to 1. This is different from the identity matrix under regular matrix multiplication, where only the elements of the main diagonal are equal to 1. Furthermore, a matrix has an inverse under Hadamard multiplication if and only if none of the elements are equal to zero.[2]

    For vectors x and y, and corresponding diagonal matrices Dx and Dy with these vectors as their leading diagonals, the following identity holds:[3]

    x^*(A \circ B)y = \mathrm{tr}(D_x^* A D_y B^T),

    where x * denotes the conjugate transpose of x. In particular, using vectors of ones, this shows that the sum of all elements in the Hadamard product is the trace of ABT. A related result for square A and B, is that the row-sums of their Hadamard product are the diagonal elements of ABT:[4]

    \sum_j (A \circ B)_{i,j} = (AB^T)_{i,i}.

    The Hadamard product is a principal submatrix of the Kronecker product.

    posted on 2012-01-04 14:44 憤怒的考拉 閱讀(869) 評論(0)  編輯  收藏

    只有注冊用戶登錄后才能發(fā)表評論。


    網(wǎng)站導航:
     
    <2025年5月>
    27282930123
    45678910
    11121314151617
    18192021222324
    25262728293031
    1234567

    常用鏈接

    留言簿

    隨筆檔案

    文章檔案

    搜索

    •  

    最新評論

    主站蜘蛛池模板: 国产性生大片免费观看性| 亚洲精品老司机在线观看| 午夜视频在线观看免费完整版| 国产片免费在线观看| 亚洲AV日韩AV永久无码久久 | 视频免费在线观看| 久久久高清免费视频| 国产亚洲美女精品久久久| 亚洲18在线天美| 国产精品免费福利久久| 亚洲AⅤ优女AV综合久久久| 亚洲AV男人的天堂在线观看| 一级毛片免费不卡在线| 亚洲欧洲自拍拍偷精品 美利坚| 阿v免费在线观看| 搡女人免费视频大全| 久久亚洲日韩看片无码| 91视频免费观看高清观看完整| 国产美女亚洲精品久久久综合| 久久久久久亚洲精品无码| 一区二区三区免费电影| 国产中文字幕免费| 在线a亚洲老鸭窝天堂av高清| 日韩免费人妻AV无码专区蜜桃| 亚洲中文字幕无码中文字在线| 七色永久性tv网站免费看| 亚洲剧情在线观看| 久久九九兔免费精品6| 无码乱人伦一区二区亚洲一| 最近免费mv在线电影| 亚洲日本一区二区| 日本免费人成视频在线观看| 亚洲一级高清在线中文字幕| 国产一精品一aⅴ一免费| a级在线免费观看| 亚洲中文字幕AV在天堂| 97视频免费在线| 亚洲伊人久久精品| 国产免费变态视频网址网站| 国产情侣久久久久aⅴ免费| 国产成人精品日本亚洲网站|