<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    posts - 1,  comments - 0,  trackbacks - 0

    Hadamard product (matrices)

    In mathematics, the Hadamard product is a binary operation that takes two matrices of the same dimensions, and produces another matrix where each element ij is the product of elements ij of the original two matrices. It should not be confused with the more common matrix product.

    The Hadamard product is associative and distributive, and unlike the matrix product it is also commutative. The Hadamard product is named after French mathematician Jacques Hadamard), and is also known as the entrywise product and the Schur product.[1]

    Definition 

    Formally, for two matrices of the same dimensions

    A, B \in {\mathbb R}^{m \times n}

    the Hadamard product A ○ B is a matrix of the same dimensions

    A \circ B \in {\mathbb R}^{m \times n},

    with elements given by

    (A \circ B)_{i,j} = (A)_{i,j} \cdot (B)_{i,j}.

    The Hadamard product is commutative, associative and distributive over addition. That is,

    A \circ B = B \circ A,
    A \circ (B \circ C) = (A \circ B) \circ C,
    A \circ (B + C) = A \circ B + A \circ C.

    The identity matrix under Hadamard multiplication of two m-by-n matrices is m-by-n matrix where all elements are equal to 1. This is different from the identity matrix under regular matrix multiplication, where only the elements of the main diagonal are equal to 1. Furthermore, a matrix has an inverse under Hadamard multiplication if and only if none of the elements are equal to zero.[2]

    For vectors x and y, and corresponding diagonal matrices Dx and Dy with these vectors as their leading diagonals, the following identity holds:[3]

    x^*(A \circ B)y = \mathrm{tr}(D_x^* A D_y B^T),

    where x * denotes the conjugate transpose of x. In particular, using vectors of ones, this shows that the sum of all elements in the Hadamard product is the trace of ABT. A related result for square A and B, is that the row-sums of their Hadamard product are the diagonal elements of ABT:[4]

    \sum_j (A \circ B)_{i,j} = (AB^T)_{i,i}.

    The Hadamard product is a principal submatrix of the Kronecker product.

    posted on 2012-01-04 14:44 憤怒的考拉 閱讀(869) 評(píng)論(0)  編輯  收藏

    只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。


    網(wǎng)站導(dǎo)航:
     
    <2025年5月>
    27282930123
    45678910
    11121314151617
    18192021222324
    25262728293031
    1234567

    常用鏈接

    留言簿

    隨筆檔案

    文章檔案

    搜索

    •  

    最新評(píng)論

    主站蜘蛛池模板: 成年大片免费高清在线看黄| 亚洲6080yy久久无码产自国产| free哆拍拍免费永久视频| 精品国产免费观看一区| 亚洲综合在线一区二区三区| 国产一卡2卡3卡4卡2021免费观看| 亚洲一本一道一区二区三区| 精品国产无限资源免费观看| 亚洲一级免费毛片| 97在线观免费视频观看| 亚洲人精品午夜射精日韩 | 在线精品一卡乱码免费| 久久久无码精品亚洲日韩按摩| 亚洲 暴爽 AV人人爽日日碰| 国产一级在线免费观看| 亚洲线精品一区二区三区| 久久aⅴ免费观看| 亚洲人成色77777在线观看大| 一级片在线免费看| 色吊丝最新永久免费观看网站 | 一级毛片免费在线| 亚洲日韩乱码中文无码蜜桃臀网站| a级毛片免费高清毛片视频| 免费A级毛片在线播放不收费| 久久不见久久见免费影院www日本| 情人伊人久久综合亚洲| 欧洲美女大片免费播放器视频| 国产亚洲精品精品国产亚洲综合| 2020天堂在线亚洲精品专区| 中国一级特黄高清免费的大片中国一级黄色片| 亚洲欧洲日产国码无码久久99| 国产精品99久久免费观看| 亚洲一区二区三区乱码在线欧洲| 国产精品国产午夜免费福利看| 国产日韩久久免费影院 | a毛片全部免费播放| 亚洲图片激情小说| 午夜亚洲国产成人不卡在线| 亚洲精品久久无码av片俺去也| 中文字幕亚洲图片| 免费人成视频在线|