習題2.17,直接利用list-ref和length過程
(define (last-pair items)
(list (list-ref items (- (length items) 1))))
習題2.18,采用迭代法
(define (reverse-list items)
(define (reverse-iter i k)
(if (null? i) k (reverse-iter (cdr i) (cons (car i) k))))
(reverse-iter items ()))
習題2.20,如果兩個數的奇偶相同,那么他們的差模2等于0,根據這一點可以寫出:
(define (same-parity a . b)
(define (same-parity-temp x y)
(cond ((null? y) y)
((= (remainder (- (car y) x) 2) 0)
(cons (car y) (same-parity-temp x (cdr y))))
(else
(same-parity-temp x (cdr y)))))
(cons a (same-parity-temp a b)))
利用了基本過程remainder取模
習題2.21,遞歸方式:
(define (square-list items)
(if (null? items)
items
(cons (square (car items)) (square-list (cdr items)))))
利用map過程:
(define (square-list items)
(map square items))
習題2.23,這與ruby中的each是一樣的意思,將操作應用于集合的每個元素:
(define (for-each proc items)
(define (for-each-temp proc temp items)
(if (null? items)
#t
(for-each-temp proc (proc (car items)) (cdr items))))
(for-each-temp proc 0 items))
最后返回true
習題2.24,盒子圖就不畫了,麻煩,解釋器輸出:
Welcome to DrScheme, version 360.
Language: Standard (R5RS).
> (list 1 (list 2 (list 3 4)))
(1 (2 (3 4)))
樹形狀應當是這樣
.
/\
/ \
1 .
/\
/ \
2 .
/\
/ \
3 4
習題2.25,
第一個list可以表示為(list 1 3 (list 5 7) 9)
因此取7的操作應當是:
(car (cdr (car (cdr (cdr (list 1 3 (list 5 7) 9))))))
第二個list表示為:(list (list 7))
因此取7操作為:
(car (car (list (list 7))))
第三個list可以表示為:
(list 1 (list 2 (list 3 (list 4 (list 5 (list 6 7))))))
因此取7的操作為:
(define x (list 1 (list 2 (list 3 (list 4 (list 5 (list 6 7)))))))
(car (cdr (car (cdr (car (cdr (car (cdr (car (cdr (car (cdr x))))))))))))
夠恐怖!-_-
習題2.26,純粹的動手題,就不說了
習題2.27,在reverse的基礎上進行修改,同樣采用迭代,比較難理解:
(define (deep-reverse x)
(define (reverse-iter rest result)
(cond ((null? rest) result)
((not (pair? (car rest)))
(reverse-iter (cdr rest)
(cons (car rest) result)))
(else
(reverse-iter (cdr rest)
(cons (deep-reverse (car rest)) result)))
))
(reverse-iter x ()))
習題2.28,遞歸,利用append過程就容易了:
(define (finge x)
(cond ((pair? x) (append (finge (car x)) (finge (cdr x))))
((null? x) ())
(else (list x))))
習題2.29,這一題很明顯出來的二叉活動體也是個層次性的樹狀結構
1)很簡單,利用car,cdr
(define (left-branch x)
(car x))
(define (right-branch x)
(car (cdr x)))
(define (branch-length b)
(car b))
(define (branch-structure b)
(car (cdr b)))
2)首先需要一個過程用于求解分支的總重量:
(define (branch-weight branch)
(let ((structure (branch-structure branch)))
(if (not (pair? structure))
structure
(total-weight structure))))
(define (total-weight mobile)
(+ (branch-weight (left-branch mobile))
(branch-weight (right-branch mobile))))
利用這個過程寫出balanced?過程:
(define (torque branch)
(* (branch-length branch) (branch-weight branch)))
(define (balanced? mobile)
(= (torque (left-branch mobile))
(torque (right-branch mobile))))
3)選擇函數和定義函數提供了一層抽象屏蔽,其他函數都是建立在這兩個基礎上,因此需要改變的僅僅是selector函數:
(define (right-branch mobile) (cdr mobile))
(define (branch-structure branch) (cdr branch))
習題2.30:
(define (square-tree tree)
(cond ((null? tree) tree)
((not (pair? tree)) (square tree))
(else
(cons (square-tree (car tree)) (square-tree (cdr tree))))))
(define (square-tree2 tree)
(map (lambda(x)
(if (pair? x)
(square-tree x)
(square x))) tree))
習題2.31,進一步抽象出map-tree,與map過程類似,將proc過程作用于樹的每個節點:
(define (tree-map proc tree)
(cond ((null? tree) tree)
((not (pair? tree)) (proc tree))
(else
(cons (tree-map proc (car tree)) (tree-map proc (cdr tree))))))
(define (square-tree3 tree)
(tree-map square tree))
習題2.32,通過觀察,rest總是cdr后的子集,比如對于(list 1 2 3),連續cdr出來的是:
(2 3)
(3)
()
其他的5個子集應該是car結果與這些子集組合的結果,因此:
(define (subsets s)
(if (null? s)
(list s)
(let ((rest (subsets (cdr s))))
(append rest (map (lambda(x) (cons (car s) x)) rest)))))