<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    posts - 403, comments - 310, trackbacks - 0, articles - 7
      BlogJava :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

     

    作者:晏渭川
    隨著Linux2.6的發布,由于2.6內核做了新的改動,各個設備的驅動程序在不同程度上要進行改寫。為了方便各位Linux愛好者我把自己整理的這分 文檔share出來。該文當列舉了2.6內核同以前版本的絕大多數變化,可惜的是由于時間和精力有限沒有詳細列出各個函數的用法。

    1、 使用新的入口
    必須包含 <linux/init.h>
    module_init(your_init_func);
    module_exit(your_exit_func);
    老版本:int init_module(void);
    void cleanup_module(voi);
    2.4中兩種都可以用,對如后面的入口函數不必要顯示包含任何頭文件。

    2、 GPL
    MODULE_LICENSE("Dual BSD/GPL");
    老版本:MODULE_LICENSE("GPL");

    3、 模塊參數
    必須顯式包含<linux/moduleparam.h>
    module_param(name, type, perm);
    module_param_named(name, value, type, perm);
    參數定義
    module_param_string(name, string, len, perm);
    module_param_array(name, type, num, perm);
    老版本:MODULE_PARM(variable,type);
    MODULE_PARM_DESC(variable,type);

    4、 模塊別名
    MODULE_ALIAS("alias-name");
    這是新增的,在老版本中需在/etc/modules.conf配置,現在在代碼中就可以實現。

    5、 模塊計數
    int try_module_get(&module);
    module_put();
    老版本:MOD_INC_USE_COUNT 和 MOD_DEC_USE_COUNT

    http://www.fsl.cs.sunysb.edu/~sean/parser.cgi?modules

    In 2.4 modules, the MOD_INC_USE_COUNT macro is used to prevent unloading of the module while there is an open file. The 2.6 kernel, however, knows not to unload a module that owns a character device that's currently open.
    However, this requires that the module be explicit in specifying ownership of character devices, using the THIS_MODULE macro.

    You also have to take out all calls to MOD_INC_USE_COUNT and MOD_DEC_USE_COUNT.
           
        static struct file_operations fops =
    {
             .owner = THIS_MODULE,
             .read = device_read,
             .write = device_write,
             .open = device_open,
             .release = device_release
    }    
           

    The 2.6 kernel considers modules that use the deprecated facility to be unsafe, and does not permit their unloading, even with rmmod -f.

    2.6,2.5的kbuild不需要到處加上MOD_INC_USE_COUNT來消除模塊卸載競爭(module unload race)

    6、 符號導出
    只有顯示的導出符號才能被其他模塊使用,默認不導出所有的符號,不必使用EXPORT_NO_SYMBOLS
    老板本:默認導出所有的符號,除非使用EXPORT_NO_SYMBOLS

    7、 內核版本檢查
    需要在多個文件中包含<linux/module.h>時,不必定義__NO_VERSION__
    老版本:在多個文件中包含<linux/module.h>時,除在主文件外的其他文件中必須定義__NO_VERSION__,防止版本重復定義。

    8、 設備號
    kdev_t被廢除不可用,新的dev_t拓展到了32位,12位主設備號,20位次設備號。
    unsigned int iminor(struct inode *inode);
    unsigned int imajor(struct inode *inode);
    老版本:8位主設備號,8位次設備號
    int MAJOR(kdev_t dev);
    int MINOR(kdev_t dev);

    9、 內存分配頭文件變更
    所有的內存分配函數包含在頭文件<linux/slab.h>,而原來的<linux/malloc.h>不存在
    老版本:內存分配函數包含在頭文件<linux/malloc.h>

    10、 結構體的初試化
    gcc開始采用ANSI C的struct結構體的初始化形式:
    static struct some_structure = {
    .field1 = value,
    .field2 = value,
    ..
    };
    老版本:非標準的初試化形式
    static struct some_structure = {
    field1: value,
    field2: value,
    ..
    };

    11、 用戶模式幫助器
    int call_usermodehelper(char *path, char **argv, char **envp, int wait);
    新增wait參數

    12、 request_module()
    request_module("foo-device-%d", number);
    老版本:
    char module_name[32];
    printf(module_name, "foo-device-%d", number);
    request_module(module_name);

    13、 dev_t引發的字符設備的變化
    1、取主次設備號為
    unsigned iminor(struct inode *inode);
    unsigned imajor(struct inode *inode);
    2、老的register_chrdev()用法沒變,保持向后兼容,但不能訪問設備號大于256的設備。
    3、新的接口為
    a)注冊字符設備范圍
    int register_chrdev_region(dev_t from, unsigned count, char *name);
    b)動態申請主設備號
    int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, char *name);
    看了這兩個函數郁悶吧^_^!怎么和file_operations結構聯系起來啊?別急!
    c)包含 <linux/cdev.h>,利用struct cdev和file_operations連接
    struct cdev *cdev_alloc(void);
    void cdev_init(struct cdev *cdev, struct file_operations *fops);
    int cdev_add(struct cdev *cdev, dev_t dev, unsigned count);
    (分別為,申請cdev結構,和fops連接,將設備加入到系統中!好復雜啊!)
    d)void cdev_del(struct cdev *cdev);
    只有在cdev_add執行成功才可運行。
    e)輔助函數
    kobject_put(&cdev->kobj);
    struct kobject *cdev_get(struct cdev *cdev);
    void cdev_put(struct cdev *cdev);
    這一部分變化和新增的/sys/dev有一定的關聯。

    14、 新增對/proc的訪問操作
    <linux/seq_file.h>
    以前的/proc中只能得到string, seq_file操作能得到如long等多種數據。
    相關函數:
    static struct seq_operations 必須實現這個類似file_operations得數據中得各個成員函數。
    seq_printf();
    int seq_putc(struct seq_file *m, char c);
    int seq_puts(struct seq_file *m, const char *s);
    int seq_escape(struct seq_file *m, const char *s, const char *esc);
    int seq_path(struct seq_file *m, struct vfsmount *mnt,
    struct dentry *dentry, char *esc);
    seq_open(file, &ct_seq_ops);
    等等

    15、 底層內存分配
    1、<linux/malloc.h>頭文件改為<linux/slab.h>
    2、分配標志GFP_BUFFER被取消,取而代之的是GFP_NOIO 和 GFP_NOFS
    3、新增__GFP_REPEAT,__GFP_NOFAIL,__GFP_NORETRY分配標志
    4、頁面分配函數alloc_pages(),get_free_page()被包含在<linux/gfp.h>中
    5、對NUMA系統新增了幾個函數:
    a) struct page *alloc_pages_node(int node_id, unsigned int gfp_mask, unsigned int order);
    b) void free_hot_page(struct page *page);
    c) void free_cold_page(struct page *page);
    6、 新增Memory pools
    <linux/mempool.h>
    mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data);
    void *mempool_alloc(mempool_t *pool, int gfp_mask);
    void mempool_free(void *element, mempool_t *pool);
    int mempool_resize(mempool_t *pool, int new_min_nr, int gfp_mask);

    16、 per-CPU變量
    get_cpu_var();
    put_cpu_var();
    void *alloc_percpu(type);
    void free_percpu(const void *);
    per_cpu_ptr(void *ptr, int cpu)
    get_cpu_ptr(ptr)
    put_cpu_ptr(ptr)
    老版本使用
    DEFINE_PER_CPU(type, name);
    EXPORT_PER_CPU_SYMBOL(name);
    EXPORT_PER_CPU_SYMBOL_GPL(name);
    DECLARE_PER_CPU(type, name);
    DEFINE_PER_CPU(int, mypcint);
    2.6內核采用了可剝奪得調度方式這些宏都不安全。

    17、 內核時間變化
    1、現在的各個平臺的HZ為
    Alpha: 1024/1200; ARM: 100/128/200/1000; CRIS: 100; i386: 1000; IA-64: 1024; M68K: 100; M68K-nommu: 50-1000; MIPS: 100/128/1000; MIPS64: 100; PA-RISC: 100/1000; PowerPC32: 100; PowerPC64: 1000; S/390: 100; SPARC32: 100; SPARC64: 100; SuperH: 100/1000; UML: 100; v850: 24-100; x86-64: 1000.
    2、由于HZ的變化,原來的jiffies計數器很快就溢出了,引入了新的計數器jiffies_64
    3、#include <linux/jiffies.h>
    u64 my_time = get_jiffies_64();
    4、新的時間結構增加了納秒成員變量
    struct timespec current_kernel_time(void);
    5、他的timer函數沒變,新增
    void add_timer_on(struct timer_list *timer, int cpu);
    6、新增納秒級延時函數
    ndelay();
    7、POSIX clocks 參考kernel/posix-timers.c

    18、 工作隊列(workqueue)
    1、任務隊列(task queue )接口函數都被取消,新增了workqueue接口函數
    struct workqueue_struct *create_workqueue(const char *name);
    DECLARE_WORK(name, void (*function)(void *), void *data);
    INIT_WORK(struct work_struct *work,
    void (*function)(void *), void *data);
    PREPARE_WORK(struct work_struct *work,
    void (*function)(void *), void *data);
    2、申明struct work_struct結構
    int queue_work(struct workqueue_struct *queue, struct work_struct *work);
    int queue_delayed_work(struct workqueue_struct *queue, struct work_struct *work,
    unsigned long delay);
    int cancel_delayed_work(struct work_struct *work);
    void flush_workqueue(struct workqueue_struct *queue);
    void destroy_workqueue(struct workqueue_struct *queue);
    int schedule_work(struct work_struct *work);
    int schedule_delayed_work(struct work_struct *work, unsigned long delay);

    19、 新增創建VFS的"libfs"
    libfs給創建一個新的文件系統提供了大量的API.
    主要是對struct file_system_type的實現。
    參考源代碼:
    drivers/hotplug/pci_hotplug_core.c
    drivers/usb/core/inode.c
    drivers/oprofile/oprofilefs.c
    fs/ramfs/inode.c
    fs/nfsd/nfsctl.c (simple_fill_super() example)

    20、 DMA的變化
    未變化的有:
    void *pci_alloc_consistent(struct pci_dev *dev, size_t size, dma_addr_t *dma_handle);
    void pci_free_consistent(struct pci_dev *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle);
    變化的有:
    1、 void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, int flag);
    void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle);
    2、列舉了映射方向:
    enum dma_data_direction {
    DMA_BIDIRECTIONAL = 0,
    DMA_TO_DEVICE = 1,
    DMA_FROM_DEVICE = 2,
    DMA_NONE = 3,
    };
    3、單映射
    dma_addr_t dma_map_single(struct device *dev, void *addr, size_t size, enum dma_data_direction direction);
    void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction direction);
    4、頁面映射
    dma_addr_t dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction);
    void dma_unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction direction);
    5、有關scatter/gather的函數:
    int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction);
    void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries, enum dma_data_direction direction);
    6、非一致性映射(Noncoherent DMA mappings)
    void *dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t *dma_handle, int flag);
    void dma_sync_single_range(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size,
    enum dma_data_direction direction);
    void dma_free_noncoherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle);
    7、DAC (double address cycle)
    int pci_dac_set_dma_mask(struct pci_dev *dev, u64 mask);
    void pci_dac_dma_sync_single(struct pci_dev *dev, dma64_addr_t dma_addr, size_t len, int direction);

    21、 互斥
    新增seqlock主要用于:
    1、少量的數據保護
    2、數據比較簡單(沒有指針),并且使用頻率很高
    3、對不產生任何副作用的數據的訪問
    4、訪問時寫者不被餓死
    <linux/seqlock.h>
    初始化
    seqlock_t lock1 = SEQLOCK_UNLOCKED;
    或seqlock_t lock2; seqlock_init(&lock2);
    void write_seqlock(seqlock_t *sl);
    void write_sequnlock(seqlock_t *sl);
    int write_tryseqlock(seqlock_t *sl);
    void write_seqlock_irqsave(seqlock_t *sl, long flags);
    void write_sequnlock_irqrestore(seqlock_t *sl, long flags);
    void write_seqlock_irq(seqlock_t *sl);
    void write_sequnlock_irq(seqlock_t *sl);
    void write_seqlock_bh(seqlock_t *sl);
    void write_sequnlock_bh(seqlock_t *sl);
    unsigned int read_seqbegin(seqlock_t *sl);
    int read_seqretry(seqlock_t *sl, unsigned int iv);
    unsigned int read_seqbegin_irqsave(seqlock_t *sl, long flags);
    int read_seqretry_irqrestore(seqlock_t *sl, unsigned int iv, long flags);

    22、 內核可剝奪
    <linux/preempt.h>
    preempt_disable();
    preempt_enable_no_resched();
    preempt_enable_noresched();
    preempt_check_resched();

    23、 眠和喚醒
    1、原來的函數可用,新增下列函數:
    prepare_to_wait_exclusive();
    prepare_to_wait();
    2、等待隊列的變化
    typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int sync);
    void init_waitqueue_func_entry(wait_queue_t *queue, wait_queue_func_t func);

    24、 新增完成事件(completion events)
    <linux/completion.h>
    init_completion(&my_comp);
    void wait_for_completion(struct completion *comp);
    void complete(struct completion *comp);
    void complete_all(struct completion *comp);

    25、 RCU(Read-copy-update)
    rcu_read_lock();
    void call_rcu(struct rcu_head *head, void (*func)(void *arg),
    void *arg);

    26、 中斷處理
    1、中斷處理有返回值了。
    IRQ_RETVAL(handled);
    2、cli(), sti(), save_flags(), 和 restore_flags()不再有效,應該使用local_save
    _flags() 或local_irq_disable()。
    3、synchronize_irq()函數有改動
    4、新增int can_request_irq(unsigned int irq, unsigned long flags);
    5、 request_irq() 和free_irq() 從 <linux/sched.h>改到了 <linux/interrupt.h>

    27、 異步I/O(AIO)
    <linux/aio.h>
    ssize_t (*aio_read) (struct kiocb *iocb, char __user *buffer, size_t count, loff_t pos);
    ssize_t (*aio_write) (struct kiocb *iocb, const char __user *buffer, size_t count, loff_t pos);
    int (*aio_fsync) (struct kiocb *, int datasync);
    新增到了file_operation結構中。
    is_sync_kiocb(struct kiocb *iocb);
    int aio_complete(struct kiocb *iocb, long res, long res2);

    28、 網絡驅動
    1、struct net_device *alloc_netdev(int sizeof_priv, const char *name, void (*setup)(struct net_device *));
    struct net_device *alloc_etherdev(int sizeof_priv);
    2、新增NAPI(New API)
    void netif_rx_schedule(struct net_device *dev);
    void netif_rx_complete(struct net_device *dev);
    int netif_rx_ni(struct sk_buff *skb);
    (老版本為netif_rx())

    29、 USB驅動
    老版本struct usb_driver取消了,新的結構體為
    struct usb_class_driver {
    char *name;
    struct file_operations *fops;
    mode_t mode;
    int minor_base;
    };
    int usb_submit_urb(struct urb *urb, int mem_flags);
    int (*probe) (struct usb_interface *intf,
    const struct usb_device_id *id);

    30、 block I/O 層
    這一部分做的改動最大。不祥敘。

    31、 mmap()
    int remap_page_range(struct vm_area_struct *vma, unsigned long from, unsigned long to, unsigned long size, pgprot_t prot);
    int io_remap_page_range(struct vm_area_struct *vma, unsigned long from, unsigned long to, unsigned long size, pgprot_t prot);
    struct page *(*nopage)(struct vm_area_struct *area, unsigned long address, int *type);
    int (*populate)(struct vm_area_struct *area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
    int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
    struct page *vmalloc_to_page(void *address);

    32、 零拷貝塊I/O(Zero-copy block I/O)
    struct bio *bio_map_user(struct block_device *bdev, unsigned long uaddr, unsigned int len, int write_to_vm);
    void bio_unmap_user(struct bio *bio, int write_to_vm);
    int get_user_pages(struct task_struct *task, struct mm_struct *mm, unsigned long start, int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);

    33、 高端內存操作kmaps
    void *kmap_atomic(struct page *page, enum km_type type);
    void kunmap_atomic(void *address, enum km_type type);
    struct page *kmap_atomic_to_page(void *address);
    老版本:kmap() 和 kunmap()。

    34、 驅動模型
    主要用于設備管理。
    1、 sysfs
    2、 Kobjects

    推薦文章:
    http:/www-900.ibm.com/developerWorks/cn/linux/kernel/l-kernel26/index.shtml
    http:/www-900.ibm.com/developerWorks/cn/linux/l-inside/index.shtml

    2.6里不需要再定義“__KERNEL__”和“MODULE”了。
    用下面的Makefile文件編譯:

    代碼:

        obj-m   := hello.o

        KDIR   := /lib/modules/$(shell uname -r)/build
        PWD      := $(shell pwd)
        default:
                  $(MAKE) -C $(KDIR) M=$(PWD) modules


    評論

    # 請求幫忙寫個linux2.6內核的模塊化的字符設備驅動程序  回復  更多評論   

    2009-05-26 09:56 by 晴天
    請求幫忙寫個linux2.6內核的模塊化的字符設備驅動程序

    我寫了個可以運行于linux2.4內核的但是不會改成可以運行在linux2.6內核上的

    請幫忙
    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/init.h>
    #include <linux/errno.h>
    #include <linux/sched.h>

    #define DEMO_MAJOR 125
    #define COMMAND1 1
    #define COMMAND2 2

    static int demo_init(void);
    static int demo_open(struct inode *inode,struct file *file);
    static int demo_close(struct inode *inode,struct file *file);
    static ssize_t demo_read(struct file *file,char *buf,size_t count,loff_t *offset);
    static int demo_ioctl(struct inode *inode,struct file *file,unsigned int cmd,unsigned long arg);
    static void demo_cleanup(void);

    int demo_param = 9;
    static int demo_initialized = 0;
    static volatile int demo_flag = 0;
    static struct file_operations demo_fops = {
    owner:THIS_MODULE,
    llseek:NULL,
    read:demo_read,
    write:NULL,
    ioctl:demo_ioctl,
    open:demo_open,
    release:demo_close,
    };

    static int demo_init(void)
    {
    int i;
    if(demo_initialized == 1)
    return 0;
    i = register_chrdev(DEMO_MAJOR,"demo_drv",&demo_fops);
    if(i<0)
    {
    printk(KERN_CRIT"DEMO:i=%d\n",i);
    return -EIO;
    }
    printk(KERN_CRIT"DEMO:demo_drv registerred successfully:)=\n");

    demo_initialized = 1;
    return 0;
    }

    static int demo_open(struct inode *inode,struct file *file)
    {
    if(demo_flag==1)
    {
    return -1;
    }
    printk(KERN_CRIT"DEMO:demo device open \n");
    MOD_INC_USE_COUNT;
    demo_flag = 1;
    return 0;
    }

    static int demo_close(struct inode *inode,struct file *file)
    {
    if(demo_flag==0)
    return 0;
    printk(KERN_CRIT "DEMO:demo device close\n");
    MOD_DEC_USE_COUNT;
    demo_flag = 0;
    return 0;
    }

    static ssize_t demo_read(struct file *file,char *buf,size_t count,loff_t *offset)
    {
    printk(KERN_CRIT "DEMO:demo is reading,demo_parm=%d\n",demo_param);
    return 0;
    }

    static int demo_ioctl(struct inode *inode,struct file *file,unsigned int cmd,unsigned long arg)
    {
    if(cmd==COMMAND1)
    {
    printk(KERN_CRIT "DEMO:set command COMMAND1\n");
    return 0;
    }
    if(cmd==COMMAND2)
    {
    printk(KERN_CRIT "DEMO:set command COMMAND2\n");
    return 0;
    }
    printk(KERN_CRIT "DEMO:set command WRONG\n");
    return 0;
    }

    static void demo_cleanup(void)
    {
    if(demo_initialized==1)
    {
    unregister_chrdev(DEMO_MAJOR,"demo_drv");
    demo_initialized = 0;
    printk(KERN_CRIT "DEMO:demo device is cleanup\n");
    }
    return;
    }

    #ifdef MODULE
    MODULE_AUTHOR("DEPART 901");
    MODULE_DESCRIPTION("DEMO driver");
    MODULE_PARM(demo_param,"i");
    MODULE_PARM_DESC(demo_param,"parameter send to driver");
    int init_module(void)
    {
    return demo_init();
    }
    void cleanup_module(void)
    {
    demo_cleanup();
    }
    #endif
    謝謝了
    主站蜘蛛池模板: yellow免费网站| 亚洲人精品亚洲人成在线| 最好2018中文免费视频| 在线观看免费毛片| 亚洲熟女综合色一区二区三区| 亚洲日本香蕉视频| 日韩大片在线永久免费观看网站 | 亚洲国产精品日韩专区AV| 亚洲日韩一区精品射精| 女人毛片a级大学毛片免费| 亚洲精品二三区伊人久久| 成人无遮挡裸免费视频在线观看| 免费日韩在线视频| 黄网站在线播放视频免费观看| 无码人妻一区二区三区免费n鬼沢 无码人妻一区二区三区免费看 | 日本二区免费一片黄2019| 亚洲AV成人精品一区二区三区| 国产免费网站看v片在线| 日韩精品福利片午夜免费观着| 亚洲AV成人影视在线观看| 日韩精品免费电影| 一级一看免费完整版毛片| 国产A在亚洲线播放| 久久不见久久见免费视频7| 亚洲国产成人久久| 免费一级毛片在线播放| 亚洲美女在线观看播放| 精品97国产免费人成视频| 成人黄动漫画免费网站视频| 国产精品亚洲专区无码WEB| 亚洲成av人片一区二区三区 | 亚洲网址在线观看| 99视频在线精品免费观看6| 污污的视频在线免费观看| 国产aⅴ无码专区亚洲av| 手机在线看永久av片免费| 亚洲日本一区二区| 日本免费电影一区| 国产午夜不卡AV免费| 亚洲已满18点击进入在线观看| 免费人妻av无码专区|