墨卡托投影(Mercator Projection),又名“等角正軸圓柱投影”,荷蘭
地圖學家墨卡托(Mercator)在1569年擬定,
假設地球被圍在一個中空的圓柱里,其赤道與圓柱相接觸,然后再假想地球中心有一盞燈,把球面上的圖形投影到圓柱體上,再把圓柱體展開,這就是一幅標準緯線
為零度(即赤道)的“墨卡托投影”
繪制出的世界地圖。
一、墨卡托投影坐標系(Mercator Projection)
墨卡托投影以整個世界范圍,赤道作為標準緯線,本初子午線作為中央經線,兩者交點為坐標原點,向東向北為正,向西向南為負。南北極在地圖的正下、上
方,而東西方向處于地圖的正右、左。
由于Mercator
Projection在兩極附近是趨于無限值得,因此它并沒完整展現了整個世界,地圖上最高緯度是85.05度。為了簡化計算,我們采用球形映射,而不是
橢球體形狀。雖然采用Mercator Projection只是為了方便展示地圖,需要知道的是,這種映射會給Y軸方向帶來0.33%的誤差。
由于赤道半徑為6378137米,則赤道周長為2*PI*r =
20037508.3427892,因此X軸的取值范圍:[-20037508.3427892,20037508.3427892]。當緯度φ接近兩
極,即90°時,Y值趨向于無窮。因此通常把Y軸的取值范圍也限定在[-20037508.3427892,20037508.3427892]之間。因
此在墨卡托投影坐標系(米)下的坐標范圍是:最小為(-20037508.3427892, -20037508.3427892 )到最大
坐標為(20037508.3427892, 20037508.3427892)。
二、地理坐標系(Geographical coordinates)
地理經度的取值范圍是[-180,180],緯度不可能到達90°,通過緯度取值范圍為
[20037508.3427892,20037508.3427892]反計算可得到緯度值為85.05112877980659。因此緯度取值范圍是
[-85.05112877980659,85.05112877980659]。因此,地理坐標系(
經緯度)對應的范圍是:最小地理坐標
(-180,-85.05112877980659),最大地理坐標(180, 85.05112877980659)。
三、地面分辨率(Ground Resolution)
地面分辨率是以一個像素(pixel)代表的地面尺寸(米)。以微軟Bing
Maps為例,當Level為1時,圖片大小為512*512(4個Tile),那么赤道空間分辨率為:赤道周長/512。其他緯度的空間分辨率則為
緯度圈長度/512,極端的北極則為0。Level為2時,赤道的空間分辨率為 赤道周長/1024,其他緯度為
緯度圈長度1024。很明顯,Ground Resolution取決于兩個參數,縮放級別Level和緯度latitude
,Level決定像素的多少,latitude決定地面距離的長短。
地面分辨率的公式為,單位:米/像素:
ground resolution = (cos(latitude * pi/180) * 2 * pi * 6378137 meters)
/ (256 * 2level pixels)
最低地圖放大級別(1級),地圖是512 x 512像素。每下一個放大級別,地圖的高度和寬度分別乘于2:2級是1024 x
1024像素,3級是2048 x 2048像素,4級是4096 x 4096像素,等等。通常而言,地圖的寬度和高度可以由以下式子計算得到:
map width = map height = 256 * 2^level
pixels
四、地圖比例尺(Map Scale)
地圖比例尺是指測量相同目標時,地圖上距離與實際距離的比例。通過地圖分辨率在計算可知由Level可得到圖片的像素大小,那么需要把其轉換為以米為
單位的距離,涉及到DPI(dot per inch),暫時可理解為類似的PPI(pixelper inch),即每英寸代表多少個像素。256 *
2level / DPI 即得到相應的英寸inch,再把英寸inch除以0.0254轉換為米。實地距離仍舊是:cos(latitude *
pi/180) * 2 * pi * 6378137 meters; 因此比例尺的公式為:
map scale = 256 * 2level / screen dpi / 0.0254 / (cos(latitude *
pi/180) * 2 * pi * 6378137)
比例尺= 1 : (cos(latitude * pi/180) * 2 * pi * 6378137 * screen dpi) /
(256 * 2level * 0.0254)
地面分辨率和地圖比例尺之間的關系:
map scale = 1 : ground resolution * screen dpi / 0.0254 meters/inch
縮放級別
|
地圖寬度、高度(像素)
|
地面分辨率(米/像素)
|
地圖比例尺(以96dpi為例)
|
1
|
512
|
78,271.5170
|
1 : 295,829,355.45
|
2
|
1,024
|
39,135.7585
|
1 : 147,914,677.73
|
3
|
2,048
|
19,567.8792
|
1 : 73,957,338.86
|
4
|
4,096
|
9,783.9396
|
1 : 36,978,669.43
|
5
|
8,192
|
4,891.9698
|
1 : 18,489,334.72
|
6
|
16,384
|
2,445.9849
|
1 : 9,244,667.36
|
7
|
32,768
|
1,222.9925
|
1 : 4,622,333.68
|
8
|
65,536
|
611.4962
|
1 : 2,311,166.84
|
9
|
131,072
|
305.7481
|
1 : 1,155,583.42
|
10
|
262,144
|
152.8741
|
1 : 577,791.71
|
11
|
524,288
|
76.4370
|
1 : 288,895.85
|
12
|
1,048,576
|
38.2185
|
1 : 144,447.93
|
13
|
2,097,152
|
19.1093
|
1 : 72,223.96
|
14
|
4,194,304
|
9.5546
|
1 : 36,111.98
|
15
|
8,388,608
|
4.7773
|
1 : 18,055.99
|
16
|
16,777,216
|
2.3887
|
1 : 9,028.00
|
17
|
33,554,432
|
1.1943
|
1 : 4,514.00
|
18
|
67,108,864
|
0.5972
|
1 : 2,257.00
|
19
|
134,217,728
|
0.2986
|
1 : 1,128.50
|
20
|
268,435,456
|
0.1493
|
1 : 564.25
|
21
|
536,870,912
|
0.0746
|
1 : 282.12
|
22
|
1,073,741,824
|
0.0373
|
1 : 141.06
|
23
|
2,147,483,648
|
0.0187
|
1 : 70.53
|
五、Bing Maps像素坐標系和地圖圖片編碼
為了優化地圖系統性能,提高地圖
下載和顯示速度,所有地圖都被分割成256 x
256像素大小的正方形小塊。由于在每個放大級別下的像素數量都不一樣,因此地圖圖片(Tile)的數量也不一樣。每個tile都有一個XY坐標值,從左
上角的(0, 0)至右下角的(2^level–1, 2^level–1)。例如在3級放大級別下,所有tile的坐標值范圍為(0, 0)至(7,
7),如下圖:
已知一個像素的XY坐標值時,我們很容易得到這個像素所在的Tile的XY坐標值:
tileX = floor(pixelX / 256) tileY = floor(pixelY /
256)
為了簡化索引和存儲地圖圖片,每個tile的二維XY值被轉換成一維字串,即四叉樹鍵值(quardtree
key,簡稱quadkey)。每個quadkey獨立對應某個放大級別下的一個tile,并且它可以被用作
數據庫中B-tree索引值。為了將坐標值轉換成
quadkey,需要將Y和X坐標二進制值交錯組合,并轉換成4進制值及對應的字符串。例如,假設在放大級別為3時,tile的XY坐標值為
(3,5),quadkey計算如下:
tileX = 3 = 011(二進制)
tileY = 5 = 101(二進制)
quadkey = 100111(二進制) =
213(四進制) = “213”
Quadkey還有其他一些有意思的特性。第一,quadkey的長度等于該tile所對應的放大級別;第二,每個tile的quadkey的前幾位
和其父tile(上一放大級別所對應的tile)的quadkey相同,下圖中,tile 2是tile 20至23的父tile,tile
13是tile 130至133的父級:
最后,quadkey提供的一維索引值通常顯示了兩個tile在XY坐標系中的相似性。換句話說,兩個相鄰的tile對應的quadkey非常接近。這對
于優化數據庫的性能非常重要,因為相鄰的tile通常被同時請求顯示,因此可以將這些tile存放在相同的磁盤區域中,以減少磁盤的讀取次數。
下面是微軟Bing Maps的TileSystem相關算法:
using System;
using System.Text;
namespace Microsoft.MapPoint
{
static class TileSystem
{
private const double EarthRadius = 6378137;
private const double MinLatitude = -85.05112878;
private const double MaxLatitude = 85.05112878;
private const double MinLongitude = -180;
private const double MaxLongitude = 180;
/// <summary>
/// Clips a number to the specified minimum and maximum values.
/// </summary>
/// <param name="n">The number to clip.</param>
/// <param name="minValue">Minimum allowable value.</param>
/// <param name="maxValue">Maximum allowable value.</param>
/// <returns>The clipped value.</returns>
private static double Clip(double n, double minValue, double maxValue)
{
return Math.Min(Math.Max(n, minValue), maxValue);
}
/// <summary>
/// Determines the map width and height (in pixels) at a specified level
/// of detail.
/// </summary>
/// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)
/// to 23 (highest detail).</param>
/// <returns>The map width and height in pixels.</returns>
public static uint MapSize(int levelOfDetail)
{
return (uint) 256 << levelOfDetail;
}
/// <summary>
/// Determines the ground resolution (in meters per pixel) at a specified
/// latitude and level of detail.
/// </summary>
/// <param name="latitude">Latitude (in degrees) at which to measure the
/// ground resolution.</param>
/// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)
/// to 23 (highest detail).</param>
/// <returns>The ground resolution, in meters per pixel.</returns>
public static double GroundResolution(double latitude, int levelOfDetail)
{
latitude = Clip(latitude, MinLatitude, MaxLatitude);
return Math.Cos(latitude * Math.PI / 180) * 2 * Math.PI * EarthRadius / MapSize(levelOfDetail);
}
/// <summary>
/// Determines the map scale at a specified latitude, level of detail,
/// and screen resolution.
/// </summary>
/// <param name="latitude">Latitude (in degrees) at which to measure the
/// map scale.</param>
/// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)
/// to 23 (highest detail).</param>
/// <param name="screenDpi">Resolution of the screen, in dots per inch.</param>
/// <returns>The map scale, expressed as the denominator N of the ratio 1 : N.</returns>
public static double MapScale(double latitude, int levelOfDetail, int screenDpi)
{
return GroundResolution(latitude, levelOfDetail) * screenDpi / 0.0254;
}
/// <summary>
/// Converts a point from latitude/longitude WGS-84 coordinates (in degrees)
/// into pixel XY coordinates at a specified level of detail.
/// </summary>
/// <param name="latitude">Latitude of the point, in degrees.</param>
/// <param name="longitude">Longitude of the point, in degrees.</param>
/// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)
/// to 23 (highest detail).</param>
/// <param name="pixelX">Output parameter receiving the X coordinate in pixels.</param>
/// <param name="pixelY">Output parameter receiving the Y coordinate in pixels.</param>
public static void LatLongToPixelXY(double latitude, double longitude, int levelOfDetail, out int pixelX, out int pixelY)
{
latitude = Clip(latitude, MinLatitude, MaxLatitude);
longitude = Clip(longitude, MinLongitude, MaxLongitude);
double x = (longitude + 180) / 360;
double sinLatitude = Math.Sin(latitude * Math.PI / 180);
double y = 0.5 - Math.Log((1 + sinLatitude) / (1 - sinLatitude)) / (4 * Math.PI);
uint mapSize = MapSize(levelOfDetail);
pixelX = (int) Clip(x * mapSize + 0.5, 0, mapSize - 1);
pixelY = (int) Clip(y * mapSize + 0.5, 0, mapSize - 1);
}
/// <summary>
/// Converts a pixel from pixel XY coordinates at a specified level of detail
/// into latitude/longitude WGS-84 coordinates (in degrees).
/// </summary>
/// <param name="pixelX">X coordinate of the point, in pixels.</param>
/// <param name="pixelY">Y coordinates of the point, in pixels.</param>
/// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)
/// to 23 (highest detail).</param>
/// <param name="latitude">Output parameter receiving the latitude in degrees.</param>
/// <param name="longitude">Output parameter receiving the longitude in degrees.</param>
public static void PixelXYToLatLong(int pixelX, int pixelY, int levelOfDetail, out double latitude, out double longitude)
{
double mapSize = MapSize(levelOfDetail);
double x = (Clip(pixelX, 0, mapSize - 1) / mapSize) - 0.5;
double y = 0.5 - (Clip(pixelY, 0, mapSize - 1) / mapSize);
latitude = 90 - 360 * Math.Atan(Math.Exp(-y * 2 * Math.PI)) / Math.PI;
longitude = 360 * x;
}
/// <summary>
/// Converts pixel XY coordinates into tile XY coordinates of the tile containing
/// the specified pixel.
/// </summary>
/// <param name="pixelX">Pixel X coordinate.</param>
/// <param name="pixelY">Pixel Y coordinate.</param>
/// <param name="tileX">Output parameter receiving the tile X coordinate.</param>
/// <param name="tileY">Output parameter receiving the tile Y coordinate.</param>
public static void PixelXYToTileXY(int pixelX, int pixelY, out int tileX, out int tileY)
{
tileX = pixelX / 256;
tileY = pixelY / 256;
}
/// <summary>
/// Converts tile XY coordinates into pixel XY coordinates of the upper-left pixel
/// of the specified tile.
/// </summary>
/// <param name="tileX">Tile X coordinate.</param>
/// <param name="tileY">Tile Y coordinate.</param>
/// <param name="pixelX">Output parameter receiving the pixel X coordinate.</param>
/// <param name="pixelY">Output parameter receiving the pixel Y coordinate.</param>
public static void TileXYToPixelXY(int tileX, int tileY, out int pixelX, out int pixelY)
{
pixelX = tileX * 256;
pixelY = tileY * 256;
}
/// <summary>
/// Converts tile XY coordinates into a QuadKey at a specified level of detail.
/// </summary>
/// <param name="tileX">Tile X coordinate.</param>
/// <param name="tileY">Tile Y coordinate.</param>
/// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)
/// to 23 (highest detail).</param>
/// <returns>A string containing the QuadKey.</returns>
public static string TileXYToQuadKey(int tileX, int tileY, int levelOfDetail)
{
StringBuilder quadKey = new StringBuilder();
for (int i = levelOfDetail; i > 0; i--)
{
char digit = '0';
int mask = 1 << (i - 1);
if ((tileX & mask) != 0)
{
digit++;
}
if ((tileY & mask) != 0)
{
digit++;
digit++;
}
quadKey.Append(digit);
}
return quadKey.ToString();
}
/// <summary>
/// Converts a QuadKey into tile XY coordinates.
/// </summary>
/// <param name="quadKey">QuadKey of the tile.</param>
/// <param name="tileX">Output parameter receiving the tile X coordinate.</param>
/// <param name="tileY">Output parameter receiving the tile Y coordinate.</param>
/// <param name="levelOfDetail">Output parameter receiving the level of detail.</param>
public static void QuadKeyToTileXY(string quadKey, out int tileX, out int tileY, out int levelOfDetail)
{
tileX = tileY = 0;
levelOfDetail = quadKey.Length;
for (int i = levelOfDetail; i > 0; i--)
{
int mask = 1 << (i - 1);
switch (quadKey[levelOfDetail - i])
{
case '0':
break;
case '1':
tileX |= mask;
break;
case '2':
tileY |= mask;
break;
case '3':
tileX |= mask;
tileY |= mask;
break;
default:
throw new ArgumentException("Invalid QuadKey digit sequence.");
}
}
}
}
}