數據分布傾斜性指的是數據分布過度集中于數據空間的某端,造成“頭重腳輕”或者“比薩斜塔”等不均勻的分布特點。數據分布傾斜性將造成運算效率上的“瓶頸”和數據分析結果的“以偏概全”。
效率上的“瓶頸”
假如在大型商場中,共有A,B1,B2…..B9十家店鋪,其中A店鋪中有99W商品,B1,B2….B9這九家店鋪分別有1W商品。我們要統計商場中商品總數,計算初,采用HASHMAP作為存儲結構,其中Key:店鋪 Value:商品。我們的計算過程是先統計每個店鋪的商品總數,最后將結果累加??梢园l現,由于A有99W商品,按照1+1的累積方式(假如1+1耗時1秒),我們要加99W個1才能得到A店鋪的商品總數(總耗時99W秒),而B1,B2….B9只需分別累加1W個1(分別耗時1W秒),而為了得到商場中的商品總數,我們必須等待所有店鋪都分別累計結束才能處理總和,顯而易見,此時運算瓶頸便集中在A店鋪的商品累計上。
這類狀況經常發生在分布式運算過程中,比如Hadoop Job計算,因為map/reduce 過程中是以Key-value形式來處理數據,假如某key下的數據量太大,會導致整個計算過程中move/shuffle/sort的耗時遠遠高于其他key,因此該Key變成為效率“瓶頸”。一般解決辦法是,自定義partitioner,對所有的Value進行自定義分組,使得每組的量較平均,從而解決時間瓶頸問題。
數據分析結果的“以偏概全”
同樣使用上述的“商場”案例,并且在此基礎上我們假設A店鋪,B9店鋪是賣低端商品,而B1,B2…..B8是賣高端商品,銷量較小。如果我們要根據商品銷售狀況分析店鋪在買家當中的受歡迎程度。由于A店鋪本身商品量大,而且定位的銷售價位是屬于薄利多銷,如果只從銷售量的考慮,我們會以為A店鋪在商場中是最受買家歡迎的,造成“片面”的分析結果。
其實,遇到這種情況,我們首先的分析賣家性質和買家性質,并且使用相對量來作為評估值,比如A店鋪賣低端商品,日銷售量1W商品,1W/99W<1%, 而B9店鋪賣低端商品,日銷售量5K商品,5K/1W=50%,所以在低端買家中,低端商品店鋪B9應該是最受歡迎的。