<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    無為

    無為則可為,無為則至深!

      BlogJava :: 首頁 :: 聯系 :: 聚合  :: 管理
      190 Posts :: 291 Stories :: 258 Comments :: 0 Trackbacks
    • Survey & Tutorial Papers

      • Data Clustering: A review ,
        Anil K. Jain and M. N. Murthy and P. J. Flynn. Pattern Recognition and Image Processing Lab, Department of Computer Science And Engineering, Michigan State University.
        [PDF]
      • Tutorial: Clustering Techniques for Large Data Sets: From the Past to the Future. ,
        A. Hinneburg and D. Keim. Tutorial Notes for ACM SIGKDD int. conf. on Knowledge Discovery and Data Mining, 1999",
        [PDF]
      • Clustering Algorithms for Spatial Databases: A Survey ,
        Erica Kolatch, Dept. of Computer Science, University of Maryland, College Park.
        [PDF]
    • BIRCH

      • BIRCH: An Efficient Data Clustering Method for Very Large Databases ,
        T. Zhang, R. Ramakrishnan and M. Livny, In Proc. of ACM SIGMOD International Conferance on Management of Data, 1996.
        [PDF]
      • BIRCH: A New Data Clustering Algorithm and Its Applications,
        T. Zhang, R. Ramakrishnan and M. Livny, Kluwer Academic Publishers, Boston.
        [PDF][Source Code] [local copy of the code]
    • CURE

      • CURE: An efficient algorithm for clustering large databases , ,
        S. Guha, R. Rastogi and K. Shim, n Proceedings of ACM SIGMOD International Conference on Management of Data, pages 73--84, New York, 1998. ACM.
        [ Short version(PDF)] [ long version (PS)] [Source Code (provided by Eui-Hong (Sam) Han, Dept. of Comp. Science & Eng. Univ. of Minnesota; han@cs.umn.edu)]
    • CLARANS

      • Efficient and Effective Clustering Methods for Spatial Data Mining, ,
        R. T. Ng and J. Han, 20th International Conference on Very Large Data Bases, September 12--15, 1994, Santiago, Chile proceeding.
        [ PDF]
    • DBSCAN

      • A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, ,
        Ester M., Kriegel H.-P., Sander J., Xu X., Proc. 2nd Int. Conf.on Knowledge Discovery and Data Mining (KDD′96), Portland, OR, 1996, pp. 226-231
        [ PDF]
    • ScaleKM and ScaleEM

      • Scaling Clustering Algorithms to Large Databases ,
        P. S. Bradley and Usama M. Fayyad and Cory Reina, Knowledge Discovery and Data Mining, 1998.
        [PDF]
      • Scaling EM (Expectation-Maximization) Clustering to Large Databases,
        P. S. Bradley and Usama Fayyad and Cory Reina, Microsoft Research, Tech. Report MSR-TR-98-35.
        [PDF]
    • MAFIA

      • MAFIA: Efficient and scalable subspace clustering for very large data sets
        H. Nagesh S. Goil and A. Choudhary, Technical Report 9906-010, Northwestern University, June 1999.
        [PDF]
    • CHAMELEON

      • CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling.
        George Karypis and Eui-Hong (Sam) Han and Vipin Kumar. Computer Vol. 32, No. 8, 1999.
        [PDF]
    • ROCK

      • ROCK: a robust clustering algorithm for categorical attributes .
        S. Guha, R. Rastogi and K. Shim. In Proceedings of International Conference on Data Engineering, 1999.
        [PDF]
    • WaveCluster

      • WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases.
        Gholamhosein Sheikholeslami and Surojit Chatterjee and Aidong Zhang. Proc. 24th Int. Conf. Very Large Data Bases.
        [PDF]
    • STING

      • STING : A Statistical Information Grid Approach to Spatial Data Mining.
        Wei Wang and Jiong Yang and Richard R. Muntz. The {VLDB} Journal, 1997.
        [PDF]
      • STING+: An Approach to Active Spatial Data Mining.
        Wei Wang and Jiong Yang and Richard R. Muntz. ICDE, 1999.
        [PDF]
    • DENCLUE

      • An Efficient Approach to Clustering in Multimedia Databases with Noise.
        Hinneburg A., Keim D.A. Proc. 4rd Int. Conf. on Knowledge Discovery and Data Mining, New York, AAAI Press, 1998.
        [PDF]
    • OPTICS

      • OPTICS: Ordering Points To Identify the Clustering Structure, .
        nkerst M., Breunig M. M., Kriegel H.-P., Sander J. Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD′99), Philadelphia, PA, 1999, pp. 49-60.
        [PDF]
    • ENCLUS

    ???Source Code:(Top)
    ??- BIRCH
    ??- CLIQUE Link Inactive
    ??Demo:(Top)
    ??- Robust & Competitive Clustering Demo 1
    ??-
    Clustering Demo 2 Currently Down
    ??



    凡是有該標志的文章,都是該blog博主Caoer(草兒)原創,凡是索引、收藏
    、轉載請注明來處和原文作者。非常感謝。

    posted on 2006-06-24 13:51 草兒 閱讀(2141) 評論(6)  編輯  收藏 所屬分類: BI and DM

    Feedback

    # re: 聚類論文資源和源代碼[未登錄] 2008-12-20 14:10 yf
    你好,我想要“聚類論文資源和源代碼”這部分內容,但是好像下載不了,麻煩你給我發一下行么?謝謝!sz-newsystem@163.com  回復  更多評論
      

    # re: 聚類論文資源和源代碼 2010-09-14 16:13 laiyue147
    能給我發一份“聚類論文資源和源代碼”嗎?謝謝!
    好像下載不了。
    laiyue147@163.com  回復  更多評論
      

    # re: 聚類論文資源和源代碼 2011-03-29 09:23 liyuhan
    您好!“聚類論文資源和源代碼”我也下不了,麻煩能發給我一份嗎?十分感謝!601220397@qq.com  回復  更多評論
      

    # re: 聚類論文資源和源代碼 2011-04-11 17:08 qiutian
    可以給我一份嗎?做畢業設計,急啊!非常感謝!qiutian520yue@163.com  回復  更多評論
      

    # re: 聚類論文資源和源代碼[未登錄] 2011-04-11 21:45 CC
    繼續求助于你的源代碼,望能發一份源代碼到我郵箱335682242@qq.com,不勝感激啊  回復  更多評論
      

    # re: 聚類論文資源和源代碼 2011-11-19 13:17 kingkejv
    能給我一份嗎,搞畢業設計用到,但沒編出來
    謝謝啦!
    我的郵箱kingkejv@163.com  回復  更多評論
      

    主站蜘蛛池模板: a级毛片在线免费观看| 精品国产日韩亚洲一区91| 青柠影视在线观看免费高清| 亚洲精品和日本精品| 羞羞网站免费观看| 亚洲AV无码不卡在线观看下载| 亚洲AV无码一区二区三区久久精品 | 人人爽人人爽人人片av免费| 免费国产小视频在线观看| 亚洲成av人片在www鸭子| 免费无码看av的网站| 国产精品亚洲天堂| 亚洲国产精品自产在线播放| 美女免费视频一区二区三区| 全亚洲最新黄色特级网站| 黄网站色视频免费观看45分钟| 亚洲国产主播精品极品网红| 国产精品一区二区三区免费| 亚洲乱码日产一区三区| 久久久久久影院久久久久免费精品国产小说 | ZZIJZZIJ亚洲日本少妇JIZJIZ| g0g0人体全免费高清大胆视频| 亚洲狠狠婷婷综合久久久久| 16女性下面扒开无遮挡免费| 国产色在线|亚洲| 国产精品色午夜视频免费看| 一级日本高清视频免费观看| 亚洲Av熟妇高潮30p| 免费毛片a在线观看67194| 亚洲精品无码成人片久久不卡| 免费大香伊蕉在人线国产| 精品国产污污免费网站入口在线| 亚洲AV第一页国产精品| 男人的好看免费观看在线视频| 欧洲精品码一区二区三区免费看| 久久精品国产亚洲AV果冻传媒| 日韩不卡免费视频| 青青草97国产精品免费观看| 99亚洲精品高清一二区| 日本一线a视频免费观看| 中文字幕乱码系列免费|