Android應(yīng)用程序框架層創(chuàng)建的應(yīng)用程序進(jìn)程具有兩個(gè)特點(diǎn),一是進(jìn)程的入口函數(shù)是ActivityThread.main,二是進(jìn)程天然支持Binder進(jìn)程間通信機(jī)制;這兩個(gè)特點(diǎn)都是在進(jìn)程的初始化過(guò)程中實(shí)現(xiàn)的,本文將詳細(xì)分析Android應(yīng)用程序進(jìn)程創(chuàng)建過(guò)程中是如何實(shí)現(xiàn)這兩個(gè)特點(diǎn)的。
Android應(yīng)用程序框架層創(chuàng)建的應(yīng)用程序進(jìn)程的入口函數(shù)是ActivityThread.main比較好理解,即進(jìn)程創(chuàng)建完成之后,Android應(yīng)用程序框架層就會(huì)在這個(gè)進(jìn)程中將ActivityThread類加載進(jìn)來(lái),然后執(zhí)行它的main函數(shù),這個(gè)main函數(shù)就是進(jìn)程執(zhí)行消息循環(huán)的地方了。Android應(yīng)用程序框架層創(chuàng)建的應(yīng)用程序進(jìn)程天然支持Binder進(jìn)程間通信機(jī)制這個(gè)特點(diǎn)應(yīng)該怎么樣理解呢?前面我們?cè)趯W(xué)習(xí)Android系統(tǒng)的Binder進(jìn)程間通信機(jī)制時(shí)說(shuō)到,它具有四個(gè)組件,分別是驅(qū)動(dòng)程序、守護(hù)進(jìn)程、Client以及Server,其中Server組件在初始化時(shí)必須進(jìn)入一個(gè)循環(huán)中不斷地與Binder驅(qū)動(dòng)程序進(jìn)行到交互,以便獲得Client組件發(fā)送的請(qǐng)求,具體可參考Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server啟動(dòng)過(guò)程源代碼分析一文,但是,當(dāng)我們?cè)贏ndroid應(yīng)用程序中實(shí)現(xiàn)Server組件的時(shí)候,我們并沒(méi)有讓進(jìn)程進(jìn)入一個(gè)循環(huán)中去等待Client組件的請(qǐng)求,然而,當(dāng)Client組件得到這個(gè)Server組件的遠(yuǎn)程接口時(shí),卻可以順利地和Server組件進(jìn)行進(jìn)程間通信,這就是因?yàn)锳ndroid應(yīng)用程序進(jìn)程在創(chuàng)建的時(shí)候就已經(jīng)啟動(dòng)了一個(gè)線程池來(lái)支持Server組件和Binder驅(qū)動(dòng)程序之間的交互了,這樣,極大地方便了在Android應(yīng)用程序中創(chuàng)建Server組件。
在Android應(yīng)用程序框架層中,是由ActivityManagerService組件負(fù)責(zé)為Android應(yīng)用程序創(chuàng)建新的進(jìn)程的,它本來(lái)也是運(yùn)行在一個(gè)獨(dú)立的進(jìn)程之中,不過(guò)這個(gè)進(jìn)程是在系統(tǒng)啟動(dòng)的過(guò)程中創(chuàng)建的。ActivityManagerService組件一般會(huì)在什么情況下會(huì)為應(yīng)用程序創(chuàng)建一個(gè)新的進(jìn)程呢?當(dāng)系統(tǒng)決定要在一個(gè)新的進(jìn)程中啟動(dòng)一個(gè)Activity或者Service時(shí),它就會(huì)創(chuàng)建一個(gè)新的進(jìn)程了,然后在這個(gè)新的進(jìn)程中啟動(dòng)這個(gè)Activity或者Service,具體可以參考Android系統(tǒng)在新進(jìn)程中啟動(dòng)自定義服務(wù)過(guò)程(startService)的原理分析、Android應(yīng)用程序啟動(dòng)過(guò)程源代碼分析和Android應(yīng)用程序在新的進(jìn)程中啟動(dòng)新的Activity的方法和過(guò)程分析這三篇文章。
ActivityManagerService啟動(dòng)新的進(jìn)程是從其成員函數(shù)startProcessLocked開(kāi)始的,在深入分析這個(gè)過(guò)程之前,我們先來(lái)看一下進(jìn)程創(chuàng)建過(guò)程的序列圖,然后再詳細(xì)分析每一個(gè)步驟。

點(diǎn)擊查看大圖
Step 1. ActivityManagerService.startProcessLocked
這個(gè)函數(shù)定義在frameworks/base/services/java/com/android/server/am/ActivityManagerService.java文件中:
public final class ActivityManagerService extends ActivityManagerNative
implements Watchdog.Monitor, BatteryStatsImpl.BatteryCallback {
......
private final void startProcessLocked(ProcessRecord app,
String hostingType, String hostingNameStr) {
......
try {
int uid = app.info.uid;
int[] gids = null;
try {
gids = mContext.getPackageManager().getPackageGids(
app.info.packageName);
} catch (PackageManager.NameNotFoundException e) {
......
}
......
int debugFlags = 0;
......
int pid = Process.start("android.app.ActivityThread",
mSimpleProcessManagement ? app.processName : null, uid, uid,
gids, debugFlags, null);
......
} catch (RuntimeException e) {
......
}
}
......
}
它調(diào)用了Process.start函數(shù)開(kāi)始為應(yīng)用程序創(chuàng)建新的進(jìn)程,注意,它傳入一個(gè)第一個(gè)參數(shù)為"android.app.ActivityThread",這就是進(jìn)程初始化時(shí)要加載的Java類了,把這個(gè)類加載到進(jìn)程之后,就會(huì)把它里面的靜態(tài)成員函數(shù)main作為進(jìn)程的入口點(diǎn),后面我們會(huì)看到。
Step 2. Process.start
這個(gè)函數(shù)定義在frameworks/base/core/java/android/os/Process.java文件中:
public class Process {
......
public static final int start(final String processClass,
final String niceName,
int uid, int gid, int[] gids,
int debugFlags,
String[] zygoteArgs)
{
if (supportsProcesses()) {
try {
return startViaZygote(processClass, niceName, uid, gid, gids,
debugFlags, zygoteArgs);
} catch (ZygoteStartFailedEx ex) {
......
}
} else {
......
return 0;
}
}
......
}
這里的supportsProcesses函數(shù)返回值為true,它是一個(gè)Native函數(shù),實(shí)現(xiàn)在frameworks/base/core/jni/android_util_Process.cpp文件中:
jboolean android_os_Process_supportsProcesses(JNIEnv* env, jobject clazz)
{
return ProcessState::self()->supportsProcesses();
}
ProcessState::supportsProcesses函數(shù)定義在frameworks/base/libs/binder/ProcessState.cpp文件中:
bool ProcessState::supportsProcesses() const
{
return mDriverFD >= 0;
}
這里的mDriverFD是設(shè)備文件/dev/binder的打開(kāi)描述符,如果成功打開(kāi)了這個(gè)設(shè)備文件,那么它的值就會(huì)大于等于0,因此,它的返回值為true。
回到Process.start函數(shù)中,它調(diào)用startViaZygote函數(shù)進(jìn)一步操作。
Step 3. Process.startViaZygote
這個(gè)函數(shù)定義在frameworks/base/core/java/android/os/Process.java文件中:
public class Process {
......
private static int startViaZygote(final String processClass,
final String niceName,
final int uid, final int gid,
final int[] gids,
int debugFlags,
String[] extraArgs)
throws ZygoteStartFailedEx {
int pid;
synchronized(Process.class) {
ArrayList<String> argsForZygote = new ArrayList<String>();
// --runtime-init, --setuid=, --setgid=,
// and --setgroups= must go first
argsForZygote.add("--runtime-init");
argsForZygote.add("--setuid=" + uid);
argsForZygote.add("--setgid=" + gid);
if ((debugFlags & Zygote.DEBUG_ENABLE_SAFEMODE) != 0) {
argsForZygote.add("--enable-safemode");
}
if ((debugFlags & Zygote.DEBUG_ENABLE_DEBUGGER) != 0) {
argsForZygote.add("--enable-debugger");
}
if ((debugFlags & Zygote.DEBUG_ENABLE_CHECKJNI) != 0) {
argsForZygote.add("--enable-checkjni");
}
if ((debugFlags & Zygote.DEBUG_ENABLE_ASSERT) != 0) {
argsForZygote.add("--enable-assert");
}
//TODO optionally enable debuger
//argsForZygote.add("--enable-debugger");
// --setgroups is a comma-separated list
if (gids != null && gids.length > 0) {
StringBuilder sb = new StringBuilder();
sb.append("--setgroups=");
int sz = gids.length;
for (int i = 0; i < sz; i++) {
if (i != 0) {
sb.append(',');
}
sb.append(gids[i]);
}
argsForZygote.add(sb.toString());
}
if (niceName != null) {
argsForZygote.add("--nice-name=" + niceName);
}
argsForZygote.add(processClass);
if (extraArgs != null) {
for (String arg : extraArgs) {
argsForZygote.add(arg);
}
}
pid = zygoteSendArgsAndGetPid(argsForZygote);
}
}
......
}
這個(gè)函數(shù)將創(chuàng)建進(jìn)程的參數(shù)放到argsForZygote列表中去,如參數(shù)"--runtime-init"表示要為新創(chuàng)建的進(jìn)程初始化運(yùn)行時(shí)庫(kù),然后調(diào)用zygoteSendAndGetPid函數(shù)進(jìn)一步操作。
Step 4. Process.zygoteSendAndGetPid
這個(gè)函數(shù)定義在frameworks/base/core/java/android/os/Process.java文件中:
public class Process {
......
private static int zygoteSendArgsAndGetPid(ArrayList<String> args)
throws ZygoteStartFailedEx {
int pid;
openZygoteSocketIfNeeded();
try {
/**
* See com.android.internal.os.ZygoteInit.readArgumentList()
* Presently the wire format to the zygote process is:
* a) a count of arguments (argc, in essence)
* b) a number of newline-separated argument strings equal to count
*
* After the zygote process reads these it will write the pid of
* the child or -1 on failure.
*/
sZygoteWriter.write(Integer.toString(args.size()));
sZygoteWriter.newLine();
int sz = args.size();
for (int i = 0; i < sz; i++) {
String arg = args.get(i);
if (arg.indexOf('\n') >= 0) {
throw new ZygoteStartFailedEx(
"embedded newlines not allowed");
}
sZygoteWriter.write(arg);
sZygoteWriter.newLine();
}
sZygoteWriter.flush();
// Should there be a timeout on this?
pid = sZygoteInputStream.readInt();
if (pid < 0) {
throw new ZygoteStartFailedEx("fork() failed");
}
} catch (IOException ex) {
......
}
return pid;
}
......
}
這里的sZygoteWriter是一個(gè)Socket寫(xiě)入流,是由openZygoteSocketIfNeeded函數(shù)打開(kāi)的:
public class Process {
......
/**
* Tries to open socket to Zygote process if not already open. If
* already open, does nothing. May block and retry.
*/
private static void openZygoteSocketIfNeeded()
throws ZygoteStartFailedEx {
int retryCount;
if (sPreviousZygoteOpenFailed) {
/*
* If we've failed before, expect that we'll fail again and
* don't pause for retries.
*/
retryCount = 0;
} else {
retryCount = 10;
}
/*
* See bug #811181: Sometimes runtime can make it up before zygote.
* Really, we'd like to do something better to avoid this condition,
* but for now just wait a bit...
*/
for (int retry = 0
; (sZygoteSocket == null) && (retry < (retryCount + 1))
; retry++ ) {
if (retry > 0) {
try {
Log.i("Zygote", "Zygote not up yet, sleeping...");
Thread.sleep(ZYGOTE_RETRY_MILLIS);
} catch (InterruptedException ex) {
// should never happen
}
}
try {
sZygoteSocket = new LocalSocket();
sZygoteSocket.connect(new LocalSocketAddress(ZYGOTE_SOCKET,
LocalSocketAddress.Namespace.RESERVED));
sZygoteInputStream
= new DataInputStream(sZygoteSocket.getInputStream());
sZygoteWriter =
new BufferedWriter(
new OutputStreamWriter(
sZygoteSocket.getOutputStream()),
256);
Log.i("Zygote", "Process: zygote socket opened");
sPreviousZygoteOpenFailed = false;
break;
} catch (IOException ex) {
......
}
}
......
}
......
}
這個(gè)Socket由frameworks/base/core/java/com/android/internal/os/ZygoteInit.java文件中的ZygoteInit類在runSelectLoopMode函數(shù)偵聽(tīng)的。
Step 5. ZygoteInit.runSelectLoopMode
這個(gè)函數(shù)定義在frameworks/base/core/java/com/android/internal/os/ZygoteInit.java文件中:
public class ZygoteInit {
......
/**
* Runs the zygote process's select loop. Accepts new connections as
* they happen, and reads commands from connections one spawn-request's
* worth at a time.
*
* @throws MethodAndArgsCaller in a child process when a main() should
* be executed.
*/
private static void runSelectLoopMode() throws MethodAndArgsCaller {
ArrayList<FileDescriptor> fds = new ArrayList();
ArrayList<ZygoteConnection> peers = new ArrayList();
FileDescriptor[] fdArray = new FileDescriptor[4];
fds.add(sServerSocket.getFileDescriptor());
peers.add(null);
int loopCount = GC_LOOP_COUNT;
while (true) {
int index;
/*
* Call gc() before we block in select().
* It's work that has to be done anyway, and it's better
* to avoid making every child do it. It will also
* madvise() any free memory as a side-effect.
*
* Don't call it every time, because walking the entire
* heap is a lot of overhead to free a few hundred bytes.
*/
if (loopCount <= 0) {
gc();
loopCount = GC_LOOP_COUNT;
} else {
loopCount--;
}
try {
fdArray = fds.toArray(fdArray);
index = selectReadable(fdArray);
} catch (IOException ex) {
throw new RuntimeException("Error in select()", ex);
}
if (index < 0) {
throw new RuntimeException("Error in select()");
} else if (index == 0) {
ZygoteConnection newPeer = acceptCommandPeer();
peers.add(newPeer);
fds.add(newPeer.getFileDesciptor());
} else {
boolean done;
done = peers.get(index).runOnce();
if (done) {
peers.remove(index);
fds.remove(index);
}
}
}
}
......
}
當(dāng)Step 4將數(shù)據(jù)通過(guò)Socket接口發(fā)送出去后,就會(huì)下面這個(gè)語(yǔ)句:
done = peers.get(index).runOnce();
這里從peers.get(index)得到的是一個(gè)ZygoteConnection對(duì)象,表示一個(gè)Socket連接,因此,接下來(lái)就是調(diào)用ZygoteConnection.runOnce函數(shù)進(jìn)一步處理了。
Step 6. ZygoteConnection.runOnce
這個(gè)函數(shù)定義在frameworks/base/core/java/com/android/internal/os/ZygoteConnection.java文件中:
class ZygoteConnection {
......
boolean runOnce() throws ZygoteInit.MethodAndArgsCaller {
String args[];
Arguments parsedArgs = null;
FileDescriptor[] descriptors;
try {
args = readArgumentList();
descriptors = mSocket.getAncillaryFileDescriptors();
} catch (IOException ex) {
......
return true;
}
......
/** the stderr of the most recent request, if avail */
PrintStream newStderr = null;
if (descriptors != null && descriptors.length >= 3) {
newStderr = new PrintStream(
new FileOutputStream(descriptors[2]));
}
int pid;
try {
parsedArgs = new Arguments(args);
applyUidSecurityPolicy(parsedArgs, peer);
applyDebuggerSecurityPolicy(parsedArgs);
applyRlimitSecurityPolicy(parsedArgs, peer);
applyCapabilitiesSecurityPolicy(parsedArgs, peer);
int[][] rlimits = null;
if (parsedArgs.rlimits != null) {
rlimits = parsedArgs.rlimits.toArray(intArray2d);
}
pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid,
parsedArgs.gids, parsedArgs.debugFlags, rlimits);
} catch (IllegalArgumentException ex) {
......
} catch (ZygoteSecurityException ex) {
......
}
if (pid == 0) {
// in child
handleChildProc(parsedArgs, descriptors, newStderr);
// should never happen
return true;
} else { /* pid != 0 */
// in parent...pid of < 0 means failure
return handleParentProc(pid, descriptors, parsedArgs);
}
}
......
}
真正創(chuàng)建進(jìn)程的地方就是在這里了:
pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid,
parsedArgs.gids, parsedArgs.debugFlags, rlimits);
有Linux開(kāi)發(fā)經(jīng)驗(yàn)的讀者很容易看懂這個(gè)函數(shù)調(diào)用,這個(gè)函數(shù)會(huì)創(chuàng)建一個(gè)進(jìn)程,而且有兩個(gè)返回值,一個(gè)是在當(dāng)前進(jìn)程中返回的,一個(gè)是在新創(chuàng)建的進(jìn)程中返回,即在當(dāng)前進(jìn)程的子進(jìn)程中返回,在當(dāng)前進(jìn)程中的返回值就是新創(chuàng)建的子進(jìn)程的pid值,而在子進(jìn)程中的返回值是0。因?yàn)槲覀冎魂P(guān)心創(chuàng)建的新進(jìn)程的情況,因此,我們沿著子進(jìn)程的執(zhí)行路徑繼續(xù)看下去:
if (pid == 0) {
// in child
handleChildProc(parsedArgs, descriptors, newStderr);
// should never happen
return true;
} else { /* pid != 0 */
......
}
這里就是調(diào)用handleChildProc函數(shù)了。
Step 7. ZygoteConnection.handleChildProc
這個(gè)函數(shù)定義在frameworks/base/core/java/com/android/internal/os/ZygoteConnection.java文件中:
class ZygoteConnection {
......
private void handleChildProc(Arguments parsedArgs,
FileDescriptor[] descriptors, PrintStream newStderr)
throws ZygoteInit.MethodAndArgsCaller {
......
if (parsedArgs.runtimeInit) {
RuntimeInit.zygoteInit(parsedArgs.remainingArgs);
} else {
......
}
}
......
}
由于在前面的Step 3中,指定了"--runtime-init"參數(shù),表示要為新創(chuàng)建的進(jìn)程初始化運(yùn)行時(shí)庫(kù),因此,這里的parseArgs.runtimeInit值為true,于是就繼續(xù)執(zhí)行RuntimeInit.zygoteInit進(jìn)一步處理了。
Step 8. RuntimeInit.zygoteInit
這個(gè)函數(shù)定義在frameworks/base/core/java/com/android/internal/os/RuntimeInit.java文件中:
public class RuntimeInit {
......
public static final void zygoteInit(String[] argv)
throws ZygoteInit.MethodAndArgsCaller {
// TODO: Doing this here works, but it seems kind of arbitrary. Find
// a better place. The goal is to set it up for applications, but not
// tools like am.
System.setOut(new AndroidPrintStream(Log.INFO, "System.out"));
System.setErr(new AndroidPrintStream(Log.WARN, "System.err"));
commonInit();
zygoteInitNative();
int curArg = 0;
for ( /* curArg */ ; curArg < argv.length; curArg++) {
String arg = argv[curArg];
if (arg.equals("--")) {
curArg++;
break;
} else if (!arg.startsWith("--")) {
break;
} else if (arg.startsWith("--nice-name=")) {
String niceName = arg.substring(arg.indexOf('=') + 1);
Process.setArgV0(niceName);
}
}
if (curArg == argv.length) {
Slog.e(TAG, "Missing classname argument to RuntimeInit!");
// let the process exit
return;
}
// Remaining arguments are passed to the start class's static main
String startClass = argv[curArg++];
String[] startArgs = new String[argv.length - curArg];
System.arraycopy(argv, curArg, startArgs, 0, startArgs.length);
invokeStaticMain(startClass, startArgs);
}
......
}
這里有兩個(gè)關(guān)鍵的函數(shù)調(diào)用,一個(gè)是zygoteInitNative函數(shù)調(diào)用,一個(gè)是invokeStaticMain函數(shù)調(diào)用,前者就是執(zhí)行Binder驅(qū)動(dòng)程序初始化的相關(guān)工作了,正是由于執(zhí)行了這個(gè)工作,才使得進(jìn)程中的Binder對(duì)象能夠順利地進(jìn)行Binder進(jìn)程間通信,而后一個(gè)函數(shù)調(diào)用,就是執(zhí)行進(jìn)程的入口函數(shù),這里就是執(zhí)行startClass類的main函數(shù)了,而這個(gè)startClass即是我們?cè)赟tep 1中傳進(jìn)來(lái)的"android.app.ActivityThread"值,表示要執(zhí)行android.app.ActivityThread類的main函數(shù)。
我們先來(lái)看一下zygoteInitNative函數(shù)的調(diào)用過(guò)程,然后再回到RuntimeInit.zygoteInit函數(shù)中來(lái),看看它是如何調(diào)用android.app.ActivityThread類的main函數(shù)的。
step 9. RuntimeInit.zygoteInitNative
這個(gè)函數(shù)定義在frameworks/base/core/java/com/android/internal/os/RuntimeInit.java文件中:
public class RuntimeInit {
......
public static final native void zygoteInitNative();
......
}
這里可以看出,函數(shù)zygoteInitNative是一個(gè)Native函數(shù),實(shí)現(xiàn)在frameworks/base/core/jni/AndroidRuntime.cpp文件中:
static void com_android_internal_os_RuntimeInit_zygoteInit(JNIEnv* env, jobject clazz)
{
gCurRuntime->onZygoteInit();
}
這里它調(diào)用了全局變量gCurRuntime的onZygoteInit函數(shù),這個(gè)全局變量的定義在frameworks/base/core/jni/AndroidRuntime.cpp文件開(kāi)頭的地方:
static AndroidRuntime* gCurRuntime = NULL;
這里可以看出,它的類型為AndroidRuntime,它是在AndroidRuntime類的構(gòu)造函數(shù)中初始化的,AndroidRuntime類的構(gòu)造函數(shù)也是定義在frameworks/base/core/jni/AndroidRuntime.cpp文件中:
AndroidRuntime::AndroidRuntime()
{
......
assert(gCurRuntime == NULL); // one per process
gCurRuntime = this;
}
那么這個(gè)AndroidRuntime類的構(gòu)造函數(shù)又是什么時(shí)候被調(diào)用的呢?AndroidRuntime類的聲明在frameworks/base/include/android_runtime/AndroidRuntime.h文件中,如果我們打開(kāi)這個(gè)文件會(huì)看到,它是一個(gè)虛擬類,也就是我們不能直接創(chuàng)建一個(gè)AndroidRuntime對(duì)象,只能用一個(gè)AndroidRuntime類的指針來(lái)指向它的某一個(gè)子類,這個(gè)子類就是AppRuntime了,它定義在frameworks/base/cmds/app_process/app_main.cpp文件中:
int main(int argc, const char* const argv[])
{
......
AppRuntime runtime;
......
}
而AppRuntime類繼續(xù)了AndroidRuntime類,它也是定義在frameworks/base/cmds/app_process/app_main.cpp文件中:
class AppRuntime : public AndroidRuntime
{
......
};
因此,在前面的com_android_internal_os_RuntimeInit_zygoteInit函數(shù),實(shí)際是執(zhí)行了AppRuntime類的onZygoteInit函數(shù)。
Step 10. AppRuntime.onZygoteInit
這個(gè)函數(shù)定義在frameworks/base/cmds/app_process/app_main.cpp文件中:
class AppRuntime : public AndroidRuntime
{
......
virtual void onZygoteInit()
{
sp<ProcessState> proc = ProcessState::self();
if (proc->supportsProcesses()) {
LOGV("App process: starting thread pool.\n");
proc->startThreadPool();
}
}
......
};
這里它就是調(diào)用ProcessState::startThreadPool啟動(dòng)線程池了,這個(gè)線程池中的線程就是用來(lái)和Binder驅(qū)動(dòng)程序進(jìn)行交互的了。
Step 11. ProcessState.startThreadPool
這個(gè)函數(shù)定義在frameworks/base/libs/binder/ProcessState.cpp文件中:
void ProcessState::startThreadPool()
{
AutoMutex _l(mLock);
if (!mThreadPoolStarted) {
mThreadPoolStarted = true;
spawnPooledThread(true);
}
}
ProcessState類是Binder進(jìn)程間通信機(jī)制的一個(gè)基礎(chǔ)組件,它的作用可以參考
淺談Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server和Client獲得Service Manager接口之路、
Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server啟動(dòng)過(guò)程源代碼分析和
Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Client獲得Server遠(yuǎn)程接口過(guò)程源代碼分析這三篇文章。這里它調(diào)用spawnPooledThread函數(shù)進(jìn)一步處理。
Step 12. ProcessState.spawnPooledThread
這個(gè)函數(shù)定義在frameworks/base/libs/binder/ProcessState.cpp文件中:
void ProcessState::spawnPooledThread(bool isMain)
{
if (mThreadPoolStarted) {
int32_t s = android_atomic_add(1, &mThreadPoolSeq);
char buf[32];
sprintf(buf, "Binder Thread #%d", s);
LOGV("Spawning new pooled thread, name=%s\n", buf);
sp<Thread> t = new PoolThread(isMain);
t->run(buf);
}
}
這里它會(huì)創(chuàng)建一個(gè)PoolThread線程類,然后執(zhí)行它的run函數(shù),最終就會(huì)執(zhí)行PoolThread類的threadLoop函數(shù)了。
Step 13. PoolThread.threadLoop
這個(gè)函數(shù)定義在frameworks/base/libs/binder/ProcessState.cpp文件中:
class PoolThread : public Thread
{
public:
PoolThread(bool isMain)
: mIsMain(isMain)
{
}
protected:
virtual bool threadLoop()
{
IPCThreadState::self()->joinThreadPool(mIsMain);
return false;
}
const bool mIsMain;
};
這里它執(zhí)行了IPCThreadState::joinThreadPool函數(shù)進(jìn)一步處理。IPCThreadState也是Binder進(jìn)程間通信機(jī)制的一個(gè)基礎(chǔ)組件,它的作用可以參考
淺談Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server和Client獲得Service Manager接口之路、
Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server啟動(dòng)過(guò)程源代碼分析和
Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Client獲得Server遠(yuǎn)程接口過(guò)程源代碼分析這三篇文章。
Step 14. IPCThreadState.joinThreadPool
這個(gè)函數(shù)定義在frameworks/base/libs/binder/IPCThreadState.cpp文件中:
void IPCThreadState::joinThreadPool(bool isMain)
{
......
mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER);
......
status_t result;
do {
int32_t cmd;
......
// now get the next command to be processed, waiting if necessary
result = talkWithDriver();
if (result >= NO_ERROR) {
size_t IN = mIn.dataAvail();
if (IN < sizeof(int32_t)) continue;
cmd = mIn.readInt32();
......
result = executeCommand(cmd);
}
......
} while (result != -ECONNREFUSED && result != -EBADF);
......
mOut.writeInt32(BC_EXIT_LOOPER);
talkWithDriver(false);
}
這個(gè)函數(shù)首先告訴Binder驅(qū)動(dòng)程序,這條線程要進(jìn)入循環(huán)了:
mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER);
然后在中間的while循環(huán)中通過(guò)talkWithDriver不斷與Binder驅(qū)動(dòng)程序進(jìn)行交互,以便獲得Client端的進(jìn)程間調(diào)用:
result = talkWithDriver();
獲得了Client端的進(jìn)程間調(diào)用后,就調(diào)用excuteCommand函數(shù)來(lái)處理這個(gè)請(qǐng)求:
result = executeCommand(cmd);
最后,線程退出時(shí),也會(huì)告訴Binder驅(qū)動(dòng)程序,它退出了,這樣Binder驅(qū)動(dòng)程序就不會(huì)再在Client端的進(jìn)程間調(diào)用分發(fā)給它了:
mOut.writeInt32(BC_EXIT_LOOPER);
talkWithDriver(false);
我們?cè)賮?lái)看看talkWithDriver函數(shù)的實(shí)現(xiàn)。
Step 15. talkWithDriver
這個(gè)函數(shù)定義在frameworks/base/libs/binder/IPCThreadState.cpp文件中:
status_t IPCThreadState::talkWithDriver(bool doReceive)
{
......
binder_write_read bwr;
// Is the read buffer empty?
const bool needRead = mIn.dataPosition() >= mIn.dataSize();
// We don't want to write anything if we are still reading
// from data left in the input buffer and the caller
// has requested to read the next data.
const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;
bwr.write_size = outAvail;
bwr.write_buffer = (long unsigned int)mOut.data();
// This is what we'll read.
if (doReceive && needRead) {
bwr.read_size = mIn.dataCapacity();
bwr.read_buffer = (long unsigned int)mIn.data();
} else {
bwr.read_size = 0;
}
......
// Return immediately if there is nothing to do.
if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR;
bwr.write_consumed = 0;
bwr.read_consumed = 0;
status_t err;
do {
......
#if defined(HAVE_ANDROID_OS)
if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)
err = NO_ERROR;
else
err = -errno;
#else
err = INVALID_OPERATION;
#endif
......
}
} while (err == -EINTR);
....
if (err >= NO_ERROR) {
if (bwr..write_consumed > 0) {
if (bwr.write_consumed < (ssize_t)mOut.dataSize())
mOut.remove(0, bwr.write_consumed);
else
mOut.setDataSize(0);
}
if (bwr.read_consumed > 0) {
mIn.setDataSize(bwr.read_consumed);
mIn.setDataPosition(0);
}
......
return NO_ERROR;
}
return err;
}
這個(gè)函數(shù)的具體作用可以參考
Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server啟動(dòng)過(guò)程源代碼分析一文,它只要就是通過(guò)ioctl文件操作函數(shù)來(lái)和Binder驅(qū)動(dòng)程序交互的了:
ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)
有了這個(gè)線程池之后,我們?cè)陂_(kāi)發(fā)Android應(yīng)用程序的時(shí)候,當(dāng)我們要和其它進(jìn)程中進(jìn)行通信時(shí),只要定義自己的Binder對(duì)象,然后把這個(gè)Binder對(duì)象的遠(yuǎn)程接口通過(guò)其它途徑傳給其它進(jìn)程后,其它進(jìn)程就可以通過(guò)這個(gè)Binder對(duì)象的遠(yuǎn)程接口來(lái)調(diào)用我們的應(yīng)用程序進(jìn)程的函數(shù)了,它不像我們?cè)贑++層實(shí)現(xiàn)Binder進(jìn)程間通信機(jī)制的Server時(shí),必須要手動(dòng)調(diào)用IPCThreadState.joinThreadPool函數(shù)來(lái)進(jìn)入一個(gè)無(wú)限循環(huán)中與Binder驅(qū)動(dòng)程序交互以便獲得Client端的請(qǐng)求,這樣就實(shí)現(xiàn)了我們?cè)谖恼麻_(kāi)頭處說(shuō)的Android應(yīng)用程序進(jìn)程天然地支持Binder進(jìn)程間通信機(jī)制。
細(xì)心的讀者可能會(huì)發(fā)現(xiàn),從Step 1到Step 9,都是在Android應(yīng)用程序框架層運(yùn)行的,而從Step 10到Step 15,都是在Android系統(tǒng)運(yùn)行時(shí)庫(kù)層運(yùn)行的,這兩個(gè)層次中的Binder進(jìn)程間通信機(jī)制的接口一個(gè)是用Java來(lái)實(shí)現(xiàn)的,而別一個(gè)是用C++來(lái)實(shí)現(xiàn)的,這兩者是如何協(xié)作的呢?這就是通過(guò)JNI層來(lái)實(shí)現(xiàn)的了,具體可以參考Android系統(tǒng)進(jìn)程間通信Binder機(jī)制在應(yīng)用程序框架層的Java接口源代碼分析一文。
回到Step 8中的RuntimeInit.zygoteInit函數(shù)中,在初始化完成Binder進(jìn)程間通信機(jī)制的基礎(chǔ)設(shè)施后,它接著就要進(jìn)入進(jìn)程的入口函數(shù)了。
Step 16. RuntimeInit.invokeStaticMain
這個(gè)函數(shù)定義在frameworks/base/core/java/com/android/internal/os/RuntimeInit.java文件中:
public class ZygoteInit {
......
static void invokeStaticMain(ClassLoader loader,
String className, String[] argv)
throws ZygoteInit.MethodAndArgsCaller {
Class<?> cl;
try {
cl = loader.loadClass(className);
} catch (ClassNotFoundException ex) {
......
}
Method m;
try {
m = cl.getMethod("main", new Class[] { String[].class });
} catch (NoSuchMethodException ex) {
......
} catch (SecurityException ex) {
......
}
int modifiers = m.getModifiers();
......
/*
* This throw gets caught in ZygoteInit.main(), which responds
* by invoking the exception's run() method. This arrangement
* clears up all the stack frames that were required in setting
* up the process.
*/
throw new ZygoteInit.MethodAndArgsCaller(m, argv);
}
......
}
前面我們說(shuō)過(guò),這里傳進(jìn)來(lái)的參數(shù)className字符串值為"android.app.ActivityThread",這里就通ClassLoader.loadClass函數(shù)將它加載到進(jìn)程中:
cl = loader.loadClass(className);
然后獲得它的靜態(tài)成員函數(shù)main:
m = cl.getMethod("main", new Class[] { String[].class });
函數(shù)最后并沒(méi)有直接調(diào)用這個(gè)靜態(tài)成員函數(shù)main,而是通過(guò)拋出一個(gè)異常ZygoteInit.MethodAndArgsCaller,然后讓ZygoteInit.main函數(shù)在捕獲這個(gè)異常的時(shí)候再調(diào)用android.app.ActivityThread類的main函數(shù)。為什么要這樣做呢?注釋里面已經(jīng)講得很清楚了,它是為了清理堆棧的,這樣就會(huì)讓android.app.ActivityThread類的main函數(shù)覺(jué)得自己是進(jìn)程的入口函數(shù),而事實(shí)上,在執(zhí)行android.app.ActivityThread類的main函數(shù)之前,已經(jīng)做了大量的工作了。
我們看看ZygoteInit.main函數(shù)在捕獲到這個(gè)異常的時(shí)候做了什么事:
public class ZygoteInit {
......
public static void main(String argv[]) {
try {
......
} catch (MethodAndArgsCaller caller) {
caller.run();
} catch (RuntimeException ex) {
......
}
}
......
}
它執(zhí)行MethodAndArgsCaller的run函數(shù):
public class ZygoteInit {
......
public static class MethodAndArgsCaller extends Exception
implements Runnable {
/** method to call */
private final Method mMethod;
/** argument array */
private final String[] mArgs;
public MethodAndArgsCaller(Method method, String[] args) {
mMethod = method;
mArgs = args;
}
public void run() {
try {
mMethod.invoke(null, new Object[] { mArgs });
} catch (IllegalAccessException ex) {
......
} catch (InvocationTargetException ex) {
......
}
}
}
......
}
這里的成員變量mMethod和mArgs都是在前面構(gòu)造異常對(duì)象時(shí)傳進(jìn)來(lái)的,這里的mMethod就對(duì)應(yīng)android.app.ActivityThread類的main函數(shù)了,于是最后就通過(guò)下面語(yǔ)句執(zhí)行這個(gè)函數(shù):
mMethod.invoke(null, new Object[] { mArgs });
這樣,android.app.ActivityThread類的main函數(shù)就被執(zhí)行了。
Step 17. ActivityThread.main
這個(gè)函數(shù)定義在frameworks/base/core/java/android/app/ActivityThread.java文件中:
public final class ActivityThread {
......
public static final void main(String[] args) {
SamplingProfilerIntegration.start();
Process.setArgV0("<pre-initialized>");
Looper.prepareMainLooper();
if (sMainThreadHandler == null) {
sMainThreadHandler = new Handler();
}
ActivityThread thread = new ActivityThread();
thread.attach(false);
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
Looper.loop();
if (Process.supportsProcesses()) {
throw new RuntimeException("Main thread loop unexpectedly exited");
}
thread.detach();
String name = (thread.mInitialApplication != null)
? thread.mInitialApplication.getPackageName()
: "<unknown>";
Slog.i(TAG, "Main thread of " + name + " is now exiting");
}
......
}
從這里我們可以看出,這個(gè)函數(shù)首先會(huì)在進(jìn)程中創(chuàng)建一個(gè)ActivityThread對(duì)象:
ActivityThread thread = new ActivityThread();
然后進(jìn)入消息循環(huán)中:
Looper.loop();
這樣,我們以后就可以在這個(gè)進(jìn)程中啟動(dòng)Activity或者Service了。
至此,Android應(yīng)用程序進(jìn)程啟動(dòng)過(guò)程的源代碼就分析完成了,它除了指定新的進(jìn)程的入口函數(shù)是ActivityThread的main函數(shù)之外,還為進(jìn)程內(nèi)的Binder對(duì)象提供了Binder進(jìn)程間通信機(jī)制的基礎(chǔ)設(shè)施,由此可見(jiàn),Binder進(jìn)程間通信機(jī)制在Android系統(tǒng)中是何等的重要,而且是無(wú)處不在,想進(jìn)一步學(xué)習(xí)Android系統(tǒng)的Binder進(jìn)程間通信機(jī)制,請(qǐng)參考Android進(jìn)程間通信(IPC)機(jī)制Binder簡(jiǎn)要介紹和學(xué)習(xí)計(jì)劃一文。
作者:Luoshengyang 發(fā)表于2011-9-9 1:01:32
原文鏈接
posted on 2012-04-17 21:32
mixer-a 閱讀(751)
評(píng)論(0) 編輯 收藏