本文作者張彥飛,原題“圖解Linux網(wǎng)絡(luò)包接收過程”,內(nèi)容有少許改動。
1、引言
因為要對百萬、千萬、甚至是過億的用戶提供各種網(wǎng)絡(luò)服務(wù),所以在一線互聯(lián)網(wǎng)企業(yè)里面試和晉升后端開發(fā)同學(xué)的其中一個重點(diǎn)要求就是要能支撐高并發(fā),要理解性能開銷,會進(jìn)行性能優(yōu)化。而很多時候,如果你對網(wǎng)絡(luò)底層的理解不深的話,遇到很多線上性能瓶頸你會覺得狗拿刺猬,無從下手。
這篇文章將用圖解的方式,從操作系統(tǒng)這一層來深度理解一下網(wǎng)絡(luò)包的接收過程(因為能直接看到內(nèi)核源碼,本文以Linux為例)。
按照慣例來借用一段最簡單的代碼開始思考。
為了簡單起見,我們用udp來舉例,如下:
int main(){
intserverSocketFd = socket(AF_INET, SOCK_DGRAM, 0);
bind(serverSocketFd, ...);
char buff[BUFFSIZE];
int readCount = recvfrom(serverSocketFd, buff, BUFFSIZE, 0, ...);
buff[readCount] = '\0';
printf("Receive from client:%s\n", buff);
}
上面代碼是一段udp server接收收據(jù)的邏輯。當(dāng)在開發(fā)視角看的時候,只要客戶端有對應(yīng)的數(shù)據(jù)發(fā)送過來,服務(wù)器端執(zhí)行recv_from后就能收到它,并把它打印出來。
我們現(xiàn)在想知道的是:當(dāng)網(wǎng)絡(luò)包達(dá)到網(wǎng)卡,直到我們的recvfrom收到數(shù)據(jù),這中間,究竟都發(fā)生過什么?
通過本文,你將從操作系統(tǒng)內(nèi)部這一層深入理解網(wǎng)絡(luò)是如何實(shí)現(xiàn)的,以及各個部分之間是如何交互的。相信這對你的工作將會有非常大的幫助(本文將以Linux為例,源碼基于Linux 3.10,源代碼參見:https://mirrors.edge.kernel.org/pub/linux/kernel/v3.x/,網(wǎng)卡驅(qū)動采用Intel的igb網(wǎng)卡舉例)。
友情提示:本文略長,可以先Mark后看!
(本文同步發(fā)布于:http://www.52im.net/thread-3247-1-1.html)
2、系列文章
本文是系列文章中的第10篇,本系列文章的大綱如下:
《不為人知的網(wǎng)絡(luò)編程(一):淺析TCP協(xié)議中的疑難雜癥(上篇)》
《不為人知的網(wǎng)絡(luò)編程(二):淺析TCP協(xié)議中的疑難雜癥(下篇)》
《不為人知的網(wǎng)絡(luò)編程(三):關(guān)閉TCP連接時為什么會TIME_WAIT、CLOSE_WAIT》
《不為人知的網(wǎng)絡(luò)編程(四):深入研究分析TCP的異常關(guān)閉》
《不為人知的網(wǎng)絡(luò)編程(五):UDP的連接性和負(fù)載均衡》
《不為人知的網(wǎng)絡(luò)編程(六):深入地理解UDP協(xié)議并用好它》
《不為人知的網(wǎng)絡(luò)編程(七):如何讓不可靠的UDP變的可靠?》
《不為人知的網(wǎng)絡(luò)編程(八):從數(shù)據(jù)傳輸層深度解密HTTP》
《不為人知的網(wǎng)絡(luò)編程(九):理論聯(lián)系實(shí)際,全方位深入理解DNS》
《不為人知的網(wǎng)絡(luò)編程(十):深入操作系統(tǒng),從內(nèi)核理解網(wǎng)絡(luò)包的接收過程(Linux篇)》(本文)
3、網(wǎng)絡(luò)收包總覽
在TCP/IP網(wǎng)絡(luò)分層模型里,整個協(xié)議棧被分成了:物理層、鏈路層、網(wǎng)絡(luò)層,傳輸層和應(yīng)用層。
物理層對應(yīng)的是網(wǎng)卡和網(wǎng)線,應(yīng)用層對應(yīng)的是我們常見的Nginx,F(xiàn)TP等等各種應(yīng)用。對于Linux來說,它實(shí)現(xiàn)的是鏈路層、網(wǎng)絡(luò)層和傳輸層這三層。
在Linux內(nèi)核實(shí)現(xiàn)中,鏈路層協(xié)議靠網(wǎng)卡驅(qū)動來實(shí)現(xiàn),內(nèi)核協(xié)議棧來實(shí)現(xiàn)網(wǎng)絡(luò)層和傳輸層。內(nèi)核對更上層的應(yīng)用層提供socket接口來供用戶進(jìn)程訪問。
我們用Linux的視角來看到的TCP/IP網(wǎng)絡(luò)分層模型應(yīng)該是下面這個樣子的:
在Linux的源代碼中,網(wǎng)絡(luò)設(shè)備驅(qū)動對應(yīng)的邏輯位于driver/net/ethernet。
其中:
1)intel系列網(wǎng)卡的驅(qū)動在driver/net/ethernet/intel目錄下;
2)協(xié)議棧模塊代碼位于kernel和net目錄。
內(nèi)核和網(wǎng)絡(luò)設(shè)備驅(qū)動是通過中斷的方式來處理的。
當(dāng)設(shè)備上有數(shù)據(jù)到達(dá)的時候:會給CPU的相關(guān)引腳上觸發(fā)一個電壓變化,以通知CPU來處理數(shù)據(jù)。
對于網(wǎng)絡(luò)模塊來說:由于處理過程比較復(fù)雜和耗時,如果在中斷函數(shù)中完成所有的處理,將會導(dǎo)致中斷處理函數(shù)(優(yōu)先級過高)將過度占據(jù)CPU,將導(dǎo)致CPU無法響應(yīng)其它設(shè)備,例如鼠標(biāo)和鍵盤的消息。
因此Linux中斷處理函數(shù)是分上半部和下半部的。上半部是只進(jìn)行最簡單的工作,快速處理然后釋放CPU,接著CPU就可以允許其它中斷進(jìn)來。剩下將絕大部分的工作都放到下半部中,可以慢慢從容處理。Linux 2.4以后的內(nèi)核版本采用的下半部實(shí)現(xiàn)方式是軟中斷,由ksoftirqd內(nèi)核線程全權(quán)處理。和硬中斷不同的是,硬中斷是通過給CPU物理引腳施加電壓變化,而軟中斷是通過給內(nèi)存中的一個變量的二進(jìn)制值以通知軟中斷處理程序。
好了,大概了解了網(wǎng)卡驅(qū)動、硬中斷、軟中斷和ksoftirqd線程之后,我們在這幾個概念的基礎(chǔ)上給出一個內(nèi)核收包的路徑示意。
Linux內(nèi)核網(wǎng)絡(luò)收包總覽:
如上圖所示:當(dāng)網(wǎng)卡上收到數(shù)據(jù)以后,Linux中第一個工作的模塊是網(wǎng)絡(luò)驅(qū)動。網(wǎng)絡(luò)驅(qū)動會以DMA的方式把網(wǎng)卡上收到的幀寫到內(nèi)存里。再向CPU發(fā)起一個中斷,以通知CPU有數(shù)據(jù)到達(dá)。第二,當(dāng)CPU收到中斷請求后,會去調(diào)用網(wǎng)絡(luò)驅(qū)動注冊的中斷處理函數(shù)。網(wǎng)卡的中斷處理函數(shù)并不做過多工作,發(fā)出軟中斷請求,然后盡快釋放CPU。ksoftirqd檢測到有軟中斷請求到達(dá),調(diào)用poll開始輪詢收包,收到后交由各級協(xié)議棧處理。對于UDP包來說,會被放到用戶socket的接收隊列中。
我們從上面這張圖中已經(jīng)從整體上把握到了操作系統(tǒng)對數(shù)據(jù)包的處理過程。但是要想了解更多網(wǎng)絡(luò)模塊工作的細(xì)節(jié),我們還得往下看。
4、網(wǎng)絡(luò)數(shù)據(jù)到來前操作系統(tǒng)的準(zhǔn)備
Linux驅(qū)動、內(nèi)核協(xié)議棧等等模塊在具備接收網(wǎng)卡數(shù)據(jù)包之前,要做很多的準(zhǔn)備工作才行。
比如:要提前創(chuàng)建好ksoftirqd內(nèi)核線程,要注冊好各個協(xié)議對應(yīng)的處理函數(shù),網(wǎng)絡(luò)設(shè)備子系統(tǒng)要提前初始化好,網(wǎng)卡要啟動好。只有這些都Ready之后,我們才能真正開始接收數(shù)據(jù)包。
那么我們現(xiàn)在來看看這些準(zhǔn)備工作都是怎么做的。
4.1 創(chuàng)建ksoftirqd內(nèi)核線程
Linux的軟中斷都是在專門的內(nèi)核線程(ksoftirqd)中進(jìn)行的,因此我們非常有必要看一下這些進(jìn)程是怎么初始化的,這樣我們才能在后面更準(zhǔn)確地了解收包過程。該進(jìn)程數(shù)量不是1個,而是N個,其中N等于你的機(jī)器的核數(shù)。
系統(tǒng)初始化的時候在kernel/smpboot.c中調(diào)用了smpboot_register_percpu_thread, 該函數(shù)進(jìn)一步會執(zhí)行到spawn_ksoftirqd(位于kernel/softirq.c)來創(chuàng)建出softirqd進(jìn)程。
創(chuàng)建ksoftirqd內(nèi)核線程:
相關(guān)代碼如下:
//file: kernel/softirq.c
static struct smp_hotplug_thread softirq_threads = {
.store = &ksoftirqd,
.thread_should_run = ksoftirqd_should_run,
.thread_fn = run_ksoftirqd,
.thread_comm = "ksoftirqd/%u",};
static__init intspawn_ksoftirqd(void){
register_cpu_notifier(&cpu_nfb);
BUG_ON(smpboot_register_percpu_thread(&softirq_threads));
return0;
}
early_initcall(spawn_ksoftirqd);
當(dāng)ksoftirqd被創(chuàng)建出來以后,它就會進(jìn)入自己的線程循環(huán)函數(shù)ksoftirqd_should_run和run_ksoftirqd了。不停地判斷有沒有軟中斷需要被處理。
這里需要注意的一點(diǎn)是,軟中斷不僅僅只有網(wǎng)絡(luò)軟中斷,還有其它類型:
//file: include/linux/interrupt.h
enum{
HI_SOFTIRQ=0,
TIMER_SOFTIRQ,
NET_TX_SOFTIRQ,
NET_RX_SOFTIRQ,
BLOCK_SOFTIRQ,
BLOCK_IOPOLL_SOFTIRQ,
TASKLET_SOFTIRQ,
SCHED_SOFTIRQ,
HRTIMER_SOFTIRQ,
RCU_SOFTIRQ,
};
4.2 網(wǎng)絡(luò)子系統(tǒng)初始化
網(wǎng)絡(luò)子系統(tǒng)初始化:
linux內(nèi)核通過調(diào)用subsys_initcall來初始化各個子系統(tǒng),在源代碼目錄里你可以grep出許多對這個函數(shù)的調(diào)用。
這里我們要說的是網(wǎng)絡(luò)子系統(tǒng)的初始化,會執(zhí)行到net_dev_init函數(shù):
//file: net/core/dev.c
static int __init net_dev_init(void){
......
for_each_possible_cpu(i) {
structsoftnet_data *sd = &per_cpu(softnet_data, i);
memset(sd, 0, sizeof(*sd));
skb_queue_head_init(&sd->input_pkt_queue);
skb_queue_head_init(&sd->process_queue);
sd->completion_queue = NULL;
INIT_LIST_HEAD(&sd->poll_list);
......
}
......
open_softirq(NET_TX_SOFTIRQ, net_tx_action);
open_softirq(NET_RX_SOFTIRQ, net_rx_action);
}
subsys_initcall(net_dev_init);
在這個函數(shù)里,會為每個CPU都申請一個softnet_data數(shù)據(jù)結(jié)構(gòu),在這個數(shù)據(jù)結(jié)構(gòu)里的poll_list是等待驅(qū)動程序?qū)⑵鋚oll函數(shù)注冊進(jìn)來,稍后網(wǎng)卡驅(qū)動初始化的時候我們可以看到這一過程。
另外open_softirq注冊了每一種軟中斷都注冊一個處理函數(shù)。NET_TX_SOFTIRQ的處理函數(shù)為net_tx_action,NET_RX_SOFTIRQ的為net_rx_action。繼續(xù)跟蹤open_softirq后發(fā)現(xiàn)這個注冊的方式是記錄在softirq_vec變量里的。后面ksoftirqd線程收到軟中斷的時候,也會使用這個變量來找到每一種軟中斷對應(yīng)的處理函數(shù)。
//file: kernel/softirq.c
void open_softirq(int nr, void(*action)(struct softirq_action *)){
softirq_vec[nr].action = action;
}
4.3 協(xié)議棧注冊
操作系統(tǒng)內(nèi)核實(shí)現(xiàn)了網(wǎng)絡(luò)層的ip協(xié)議,也實(shí)現(xiàn)了傳輸層的tcp協(xié)議和udp協(xié)議。這些協(xié)議對應(yīng)的實(shí)現(xiàn)函數(shù)分別是ip_rcv(),tcp_v4_rcv()和udp_rcv()。和我們平時寫代碼的方式不一樣的是,內(nèi)核是通過注冊的方式來實(shí)現(xiàn)的。
Linux內(nèi)核中的fs_initcall和subsys_initcall類似,也是初始化模塊的入口。fs_initcall調(diào)用inet_init后開始網(wǎng)絡(luò)協(xié)議棧注冊。通過inet_init,將這些函數(shù)注冊到了inet_protos和ptype_base數(shù)據(jù)結(jié)構(gòu)中了。
如下圖:
相關(guān)代碼如下:
//file: net/ipv4/af_inet.c
static struct packet_type ip_packet_type __read_mostly = {
.type = cpu_to_be16(ETH_P_IP),
.func = ip_rcv,};static const struct net_protocol udp_protocol = {
.handler = udp_rcv,
.err_handler = udp_err,
.no_policy = 1,
.netns_ok = 1,};static const struct net_protocol tcp_protocol = {
.early_demux = tcp_v4_early_demux,
.handler = tcp_v4_rcv,
.err_handler = tcp_v4_err,
.no_policy = 1,
.netns_ok = 1,
};
static int __init inet_init(void){
......
if(inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0)
pr_crit("%s: Cannot add ICMP protocol\n", __func__);
if(inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0)
pr_crit("%s: Cannot add UDP protocol\n", __func__);
if(inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0)
pr_crit("%s: Cannot add TCP protocol\n", __func__);
......
dev_add_pack(&ip_packet_type);
}
上面的代碼中我們可以看到,udp_protocol結(jié)構(gòu)體中的handler是udp_rcv,tcp_protocol結(jié)構(gòu)體中的handler是tcp_v4_rcv,通過inet_add_protocol被初始化了進(jìn)來。
int inet_add_protocol(const struct net_protocol *prot, unsigned charprotocol){
if(!prot->netns_ok) {
pr_err("Protocol %u is not namespace aware, cannot register.\n",
protocol);
return-EINVAL;
}
return !cmpxchg((conststructnet_protocol **)&inet_protos[protocol],
NULL, prot) ? 0 : -1;
}
inet_add_protocol函數(shù)將tcp和udp對應(yīng)的處理函數(shù)都注冊到了inet_protos數(shù)組中了。再看dev_add_pack(&ip_packet_type);這一行,ip_packet_type結(jié)構(gòu)體中的type是協(xié)議名,func是ip_rcv函數(shù),在dev_add_pack中會被注冊到ptype_base哈希表中。
//file: net/core/dev.c
void dev_add_pack(struct packet_type *pt){
struct list_head *head = ptype_head(pt);
......
}
static inline struct list_head *ptype_head(const struct packet_type *pt){
if(pt->type == htons(ETH_P_ALL))
return &ptype_all;
else
return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
}
這里我們需要記住inet_protos記錄著udp,tcp的處理函數(shù)地址,ptype_base存儲著ip_rcv()函數(shù)的處理地址。后面我們會看到軟中斷中會通過ptype_base找到ip_rcv函數(shù)地址,進(jìn)而將ip包正確地送到ip_rcv()中執(zhí)行。在ip_rcv中將會通過inet_protos找到tcp或者udp的處理函數(shù),再而把包轉(zhuǎn)發(fā)給udp_rcv()或tcp_v4_rcv()函數(shù)。
擴(kuò)展一下,如果看一下ip_rcv和udp_rcv等函數(shù)的代碼能看到很多協(xié)議的處理過程。
例如:ip_rcv中會處理netfilter和iptable過濾,如果你有很多或者很復(fù)雜的 netfilter 或 iptables 規(guī)則,這些規(guī)則都是在軟中斷的上下文中執(zhí)行的,會加大網(wǎng)絡(luò)延遲。
再例如:udp_rcv中會判斷socket接收隊列是否滿了。對應(yīng)的相關(guān)內(nèi)核參數(shù)是net.core.rmem_max和net.core.rmem_default。如果有興趣,建議大家好好讀一下inet_init這個函數(shù)的代碼。
4.4 網(wǎng)卡驅(qū)動初始化
每一個驅(qū)動程序(不僅僅只是網(wǎng)卡驅(qū)動)會使用 module_init 向內(nèi)核注冊一個初始化函數(shù),當(dāng)驅(qū)動被加載時,內(nèi)核會調(diào)用這個函數(shù)。
比如igb網(wǎng)卡驅(qū)動的代碼位于drivers/net/ethernet/intel/igb/igb_main.c:
//file: drivers/net/ethernet/intel/igb/igb_main.c
static struct pci_driver igb_driver = {
.name = igb_driver_name,
.id_table = igb_pci_tbl,
.probe = igb_probe,
.remove= igb_remove,
......
};
static int __init igb_init_module(void){
......
ret = pci_register_driver(&igb_driver);
return ret;
}
驅(qū)動的pci_register_driver調(diào)用完成后,Linux內(nèi)核就知道了該驅(qū)動的相關(guān)信息,比如igb網(wǎng)卡驅(qū)動的igb_driver_name和igb_probe函數(shù)地址等等。當(dāng)網(wǎng)卡設(shè)備被識別以后,內(nèi)核會調(diào)用其驅(qū)動的probe方法(igb_driver的probe方法是igb_probe)。驅(qū)動probe方法執(zhí)行的目的就是讓設(shè)備ready,對于igb網(wǎng)卡,其igb_probe位于drivers/net/ethernet/intel/igb/igb_main.c下。
主要執(zhí)行的操作如下:
第5步中我們看到:網(wǎng)卡驅(qū)動實(shí)現(xiàn)了ethtool所需要的接口,也在這里注冊完成函數(shù)地址的注冊。當(dāng) ethtool 發(fā)起一個系統(tǒng)調(diào)用之后,內(nèi)核會找到對應(yīng)操作的回調(diào)函數(shù)。對于igb網(wǎng)卡來說,其實(shí)現(xiàn)函數(shù)都在drivers/net/ethernet/intel/igb/igb_ethtool.c下。
相信你這次能徹底理解ethtool的工作原理了吧?這個命令之所以能查看網(wǎng)卡收發(fā)包統(tǒng)計、能修改網(wǎng)卡自適應(yīng)模式、能調(diào)整RX 隊列的數(shù)量和大小,是因為ethtool命令最終調(diào)用到了網(wǎng)卡驅(qū)動的相應(yīng)方法,而不是ethtool本身有這個超能力。
第6步:注冊的igb_netdev_ops中包含的是igb_open等函數(shù),該函數(shù)在網(wǎng)卡被啟動的時候會被調(diào)用。
//file: drivers/net/ethernet/intel/igb/igb_main.c
static const struct net_device_ops igb_netdev_ops = {
.ndo_open = igb_open,
.ndo_stop = igb_close,
.ndo_start_xmit = igb_xmit_frame,
.ndo_get_stats64 = igb_get_stats64,
.ndo_set_rx_mode = igb_set_rx_mode,
.ndo_set_mac_address = igb_set_mac,
.ndo_change_mtu = igb_change_mtu,
.ndo_do_ioctl = igb_ioctl,
......
第7步:在igb_probe初始化過程中,還調(diào)用到了igb_alloc_q_vector。他注冊了一個NAPI機(jī)制所必須的poll函數(shù),對于igb網(wǎng)卡驅(qū)動來說,這個函數(shù)就是igb_poll,如下代碼所示。
static int igb_alloc_q_vector(struct igb_adapter *adapter,
int v_count, int v_idx,
int txr_count, int txr_idx,
int rxr_count, int rxr_idx){
......
/* initialize NAPI */
netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
}
4.5 啟動網(wǎng)卡
當(dāng)上面的初始化都完成以后,就可以啟動網(wǎng)卡了。
回憶前面網(wǎng)卡驅(qū)動初始化時,我們提到了驅(qū)動向內(nèi)核注冊了 structure net_device_ops 變量,它包含著網(wǎng)卡啟用、發(fā)包、設(shè)置mac 地址等回調(diào)函數(shù)(函數(shù)指針)。當(dāng)啟用一個網(wǎng)卡時(例如,通過 ifconfig eth0 up),net_device_ops 中的 igb_open方法會被調(diào)用。
它通常會做以下事情:
//file: drivers/net/ethernet/intel/igb/igb_main.c
static int __igb_open(struct net_device *netdev, bool resuming){
/* allocate transmit descriptors */
err = igb_setup_all_tx_resources(adapter);
/* allocate receive descriptors */
err = igb_setup_all_rx_resources(adapter);
/* 注冊中斷處理函數(shù) */
err = igb_request_irq(adapter);
if(err)
goto err_req_irq;
/* 啟用NAPI */
for(i = 0; i < adapter->num_q_vectors; i++)
napi_enable(&(adapter->q_vector[I ]->napi));
......
}
在上面__igb_open函數(shù)調(diào)用了igb_setup_all_tx_resources,和igb_setup_all_rx_resources。在igb_setup_all_rx_resources這一步操作中,分配了RingBuffer,并建立內(nèi)存和Rx隊列的映射關(guān)系。(Rx Tx 隊列的數(shù)量和大小可以通過 ethtool 進(jìn)行配置)。
我們再接著看中斷函數(shù)注冊igb_request_irq:
static int igb_request_irq(struct igb_adapter *adapter){
if(adapter->msix_entries) {
err = igb_request_msix(adapter);
if(!err)
goto request_done;
......
}
}
static int igb_request_msix(struct igb_adapter *adapter){
......
for(i = 0; i < adapter->num_q_vectors; i++) {
...
err = request_irq(adapter->msix_entries[vector].vector,
igb_msix_ring, 0, q_vector->name,
}
在上面的代碼中跟蹤函數(shù)調(diào)用, __igb_open => igb_request_irq => igb_request_msix, 在igb_request_msix中我們看到了,對于多隊列的網(wǎng)卡,為每一個隊列都注冊了中斷,其對應(yīng)的中斷處理函數(shù)是igb_msix_ring(該函數(shù)也在drivers/net/ethernet/intel/igb/igb_main.c下)。
我們也可以看到,msix方式下,每個 RX 隊列有獨(dú)立的MSI-X 中斷,從網(wǎng)卡硬件中斷的層面就可以設(shè)置讓收到的包被不同的 CPU處理。(可以通過 irqbalance ,或者修改 /proc/irq/IRQ_NUMBER/smp_affinity能夠修改和CPU的綁定行為)。
當(dāng)做好以上準(zhǔn)備工作以后,就可以開門迎客(數(shù)據(jù)包)了!
5、開始迎接數(shù)據(jù)的到來
5.1 硬中斷處理
首先:當(dāng)數(shù)據(jù)幀從網(wǎng)線到達(dá)網(wǎng)卡上的時候,第一站是網(wǎng)卡的接收隊列。
網(wǎng)卡在分配給自己的RingBuffer中尋找可用的內(nèi)存位置,找到后DMA引擎會把數(shù)據(jù)DMA到網(wǎng)卡之前關(guān)聯(lián)的內(nèi)存里,這個時候CPU都是無感的。當(dāng)DMA操作完成以后,網(wǎng)卡會像CPU發(fā)起一個硬中斷,通知CPU有數(shù)據(jù)到達(dá)。
網(wǎng)卡數(shù)據(jù)硬中斷處理過程:
注意:當(dāng)RingBuffer滿的時候,新來的數(shù)據(jù)包將給丟棄。ifconfig查看網(wǎng)卡的時候,可以里面有個overruns,表示因為環(huán)形隊列滿被丟棄的包。如果發(fā)現(xiàn)有丟包,可能需要通過ethtool命令來加大環(huán)形隊列的長度。
在啟動網(wǎng)卡一節(jié),我們說到了網(wǎng)卡的硬中斷注冊的處理函數(shù)是igb_msix_ring:
//file: drivers/net/ethernet/intel/igb/igb_main.c
static irqreturn_t igb_msix_ring(intirq, void *data){
struct igb_q_vector *q_vector = data;
/* Write the ITR value calculated from the previous interrupt. */
igb_write_itr(q_vector);
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
igb_write_itr只是記錄一下硬件中斷頻率(據(jù)說目的是在減少對CPU的中斷頻率時用到)。
順著napi_schedule調(diào)用一路跟蹤下去,__napi_schedule=>____napi_schedule:
/* Called with irq disabled */
static inline void____napi_schedule(struct softnet_data *sd,
struct napi_struct *napi){
list_add_tail(&napi->poll_list, &sd->poll_list);
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
}
這里我們看到:list_add_tail修改了CPU變量softnet_data里的poll_list,將驅(qū)動napi_struct傳過來的poll_list添加了進(jìn)來。
其中:softnet_data中的poll_list是一個雙向列表,其中的設(shè)備都帶有輸入幀等著被處理。緊接著__raise_softirq_irqoff觸發(fā)了一個軟中斷NET_RX_SOFTIRQ, 這個所謂的觸發(fā)過程只是對一個變量進(jìn)行了一次或運(yùn)算而已。
void __raise_softirq_irqoff(unsigned int nr){
trace_softirq_raise(nr);
or_softirq_pending(1UL << nr);
}
//file: include/linux/irq_cpustat.h
#define or_softirq_pending(x) (local_softirq_pending() |= (x))
我們說過:Linux在硬中斷里只完成簡單必要的工作,剩下的大部分的處理都是轉(zhuǎn)交給軟中斷的。
通過上面代碼可以看到:硬中斷處理過程真的是非常短。只是記錄了一個寄存器,修改了一下下CPU的poll_list,然后發(fā)出個軟中斷。就這么簡單,硬中斷工作就算是完成了。
5.2 ksoftirqd內(nèi)核線程處理軟中斷
ksoftirqd內(nèi)核線程:
內(nèi)核線程初始化的時候,我們介紹了ksoftirqd中兩個線程函數(shù)ksoftirqd_should_run和run_ksoftirqd。
其中ksoftirqd_should_run代碼如下:
static int ksoftirqd_should_run(unsigned int cpu){
return local_softirq_pending();
}
#define local_softirq_pending() \ __IRQ_STAT(smp_processor_id(), __softirq_pending)
這里看到和硬中斷中調(diào)用了同一個函數(shù)local_softirq_pending。使用方式不同的是硬中斷位置是為了寫入標(biāo)記,這里僅僅只是讀取。如果硬中斷中設(shè)置了NET_RX_SOFTIRQ,這里自然能讀取的到。
接下來會真正進(jìn)入線程函數(shù)中run_ksoftirqd處理:
static void run_ksoftirqd(unsigned int cpu){
local_irq_disable();
if(local_softirq_pending()) {
__do_softirq();
rcu_note_context_switch(cpu);
local_irq_enable();
cond_resched();
return;
}
local_irq_enable();
}
在__do_softirq中,判斷根據(jù)當(dāng)前CPU的軟中斷類型,調(diào)用其注冊的action方法。
asmlinkage void__do_softirq(void){
do{
if(pending & 1) {
unsigned int vec_nr = h - softirq_vec;
int prev_count = preempt_count();
...
trace_softirq_entry(vec_nr);
h->action(h);
trace_softirq_exit(vec_nr);
...
}
h++;
pending >>= 1;
} while(pending);
}
在網(wǎng)絡(luò)子系統(tǒng)初始化小節(jié), 我們看到我們?yōu)镹ET_RX_SOFTIRQ注冊了處理函數(shù)net_rx_action。所以net_rx_action函數(shù)就會被執(zhí)行到了。
這里需要注意一個細(xì)節(jié),硬中斷中設(shè)置軟中斷標(biāo)記,和ksoftirq的判斷是否有軟中斷到達(dá),都是基于smp_processor_id()的。這意味著只要硬中斷在哪個CPU上被響應(yīng),那么軟中斷也是在這個CPU上處理的。所以說,如果你發(fā)現(xiàn)你的Linux軟中斷CPU消耗都集中在一個核上的話,做法是要把調(diào)整硬中斷的CPU親和性,來將硬中斷打散到不同的CPU核上去。
我們再來把精力集中到這個核心函數(shù)net_rx_action上來:
static void net_rx_action(struct softirq_action *h){
struct softnet_data *sd = &__get_cpu_var(softnet_data);
unsigned long time_limit = jiffies + 2;
int budget = netdev_budget;
void *have;
local_irq_disable();
while(!list_empty(&sd->poll_list)) {
......
n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
work = 0;
if(test_bit(NAPI_STATE_SCHED, &n->state)) {
work = n->poll(n, weight);
trace_napi_poll(n);
}
budget -= work;
}
}
函數(shù)開頭的time_limit和budget是用來控制net_rx_action函數(shù)主動退出的,目的是保證網(wǎng)絡(luò)包的接收不霸占CPU不放。等下次網(wǎng)卡再有硬中斷過來的時候再處理剩下的接收數(shù)據(jù)包。其中budget可以通過內(nèi)核參數(shù)調(diào)整。這個函數(shù)中剩下的核心邏輯是獲取到當(dāng)前CPU變量softnet_data,對其poll_list進(jìn)行遍歷, 然后執(zhí)行到網(wǎng)卡驅(qū)動注冊到的poll函數(shù)。
對于igb網(wǎng)卡來說,就是igb驅(qū)動力的igb_poll函數(shù)了:
static int igb_poll(struct napi_struct *napi, int budget){
...
if(q_vector->tx.ring)
clean_complete = igb_clean_tx_irq(q_vector);
if(q_vector->rx.ring)
clean_complete &= igb_clean_rx_irq(q_vector, budget);
...
}
在讀取操作中,igb_poll的重點(diǎn)工作是對igb_clean_rx_irq的調(diào)用:
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget){
...
do{
/* retrieve a buffer from the ring */
skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
/* fetch next buffer in frame if non-eop */
if(igb_is_non_eop(rx_ring, rx_desc))
continue;
}
/* verify the packet layout is correct */
if(igb_cleanup_headers(rx_ring, rx_desc, skb)) {
skb = NULL;
continue;
}
/* populate checksum, timestamp, VLAN, and protocol */
igb_process_skb_fields(rx_ring, rx_desc, skb);
napi_gro_receive(&q_vector->napi, skb);
}
igb_fetch_rx_buffer和igb_is_non_eop的作用就是把數(shù)據(jù)幀從RingBuffer上取下來。
為什么需要兩個函數(shù)呢?因為有可能幀要占多多個RingBuffer,所以是在一個循環(huán)中獲取的,直到幀尾部。獲取下來的一個數(shù)據(jù)幀用一個sk_buff來表示。收取完數(shù)據(jù)以后,對其進(jìn)行一些校驗,然后開始設(shè)置sbk變量的timestamp, VLAN id, protocol等字段。
接下來進(jìn)入到napi_gro_receive中:
//file: net/core/dev.c
gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb){
skb_gro_reset_offset(skb);
return napi_skb_finish(dev_gro_receive(napi, skb), skb);
}
dev_gro_receive這個函數(shù)代表的是網(wǎng)卡GRO特性,可以簡單理解成把相關(guān)的小包合并成一個大包就行,目的是減少傳送給網(wǎng)絡(luò)棧的包數(shù),這有助于減少 CPU 的使用量。我們暫且忽略,直接看napi_skb_finish。
這個函數(shù)主要就是調(diào)用了netif_receive_skb:
//file: net/core/dev.c
static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb){
switch(ret) {
case GRO_NORMAL:
if(netif_receive_skb(skb))
ret = GRO_DROP;
break;
......
}
在netif_receive_skb中,數(shù)據(jù)包將被送到協(xié)議棧中。聲明,以下的5.3、5.4、5.5也都屬于軟中斷的處理過程,只不過由于篇幅太長,單獨(dú)拿出來成小節(jié)。
5.3 網(wǎng)絡(luò)協(xié)議棧處理
netif_receive_skb函數(shù)會根據(jù)包的協(xié)議,假如是udp包,會將包依次送到ip_rcv(),udp_rcv()協(xié)議處理函數(shù)中進(jìn)行處理。
網(wǎng)絡(luò)協(xié)議棧處理:
//file: net/core/dev.c
int netif_receive_skb(struct sk_buff *skb){
//RPS處理邏輯,先忽略 ......
return __netif_receive_skb(skb);
}
static int __netif_receive_skb(struct sk_buff *skb){
......
ret = __netif_receive_skb_core(skb, false);}static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc){
......
//pcap邏輯,這里會將數(shù)據(jù)送入抓包點(diǎn)。tcpdump就是從這個入口獲取包的 list_for_each_entry_rcu(ptype, &ptype_all, list) {
if(!ptype->dev || ptype->dev == skb->dev) {
if(pt_prev)
ret = deliver_skb(skb, pt_prev, orig_dev);
pt_prev = ptype;
}
}
......
list_for_each_entry_rcu(ptype,
&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
if(ptype->type == type &&
(ptype->dev == null_or_dev || ptype->dev == skb->dev ||
ptype->dev == orig_dev)) {
if(pt_prev)
ret = deliver_skb(skb, pt_prev, orig_dev);
pt_prev = ptype;
}
}
}
在__netif_receive_skb_core中,我看著原來經(jīng)常使用的tcpdump的抓包點(diǎn),很是激動,看來讀一遍源代碼時間真的沒白浪費(fèi)。
接著__netif_receive_skb_core取出protocol,它會從數(shù)據(jù)包中取出協(xié)議信息,然后遍歷注冊在這個協(xié)議上的回調(diào)函數(shù)列表。ptype_base 是一個 hash table,在協(xié)議注冊小節(jié)我們提到過。ip_rcv 函數(shù)地址就是存在這個 hash table中的。
//file: net/core/dev.c
static inline int deliver_skb(struct sk_buff *skb,
struct packet_type *pt_prev,
struct net_device *orig_dev){
......
return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
}
pt_prev->func這一行就調(diào)用到了協(xié)議層注冊的處理函數(shù)了。對于ip包來講,就會進(jìn)入到ip_rcv(如果是arp包的話,會進(jìn)入到arp_rcv)。
5.4 IP協(xié)議層處理
我們再來大致看一下linux在ip協(xié)議層都做了什么,包又是怎么樣進(jìn)一步被送到udp或tcp協(xié)議處理函數(shù)中的。
//file: net/ipv4/ip_input.c
int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev){
......
return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, dev, NULL, ip_rcv_finish);
}
這里NF_HOOK是一個鉤子函數(shù),當(dāng)執(zhí)行完注冊的鉤子后就會執(zhí)行到最后一個參數(shù)指向的函數(shù)ip_rcv_finish。
static int ip_rcv_finish(struct sk_buff *skb){
......
if(!skb_dst(skb)) {
int err = ip_route_input_noref(skb, iph->daddr, iph->saddr, iph->tos, skb->dev);
...
}
......
return dst_input(skb);
}
跟蹤ip_route_input_noref 后看到它又調(diào)用了 ip_route_input_mc。
在ip_route_input_mc中,函數(shù)ip_local_deliver被賦值給了dst.input, 如下:
//file: net/ipv4/route.c
static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,u8 tos, struct net_device *dev, int our){
if(our) {
rth->dst.input= ip_local_deliver;
rth->rt_flags |= RTCF_LOCAL;
}
}
所以回到ip_rcv_finish中的return dst_input(skb):
/* Input packet from network to transport. */
static inline intdst_input(struct sk_buff *skb){
return skb_dst(skb)->input(skb);
}
skb_dst(skb)->input調(diào)用的input方法就是路由子系統(tǒng)賦的ip_local_deliver:
//file: net/ipv4/ip_input.c
int ip_local_deliver(struct sk_buff *skb){
/* * Reassemble IP fragments. */
if(ip_is_fragment(ip_hdr(skb))) {
if(ip_defrag(skb, IP_DEFRAG_LOCAL_DELIVER))
return 0;
}
return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN, skb, skb->dev, NULL, ip_local_deliver_finish);
}
static int ip_local_deliver_finish(struct sk_buff *skb){
......
int protocol = ip_hdr(skb)->protocol;
const struct net_protocol *ipprot;
ipprot = rcu_dereference(inet_protos[protocol]);
if(ipprot != NULL) {
ret = ipprot->handler(skb);
}
}
如協(xié)議注冊小節(jié)看到inet_protos中保存著tcp_rcv()和udp_rcv()的函數(shù)地址。這里將會根據(jù)包中的協(xié)議類型選擇進(jìn)行分發(fā),在這里skb包將會進(jìn)一步被派送到更上層的協(xié)議中,udp和tcp。
5.5 UDP協(xié)議層處理
在協(xié)議注冊小節(jié)的時候我們說過,udp協(xié)議的處理函數(shù)是udp_rcv。
//file: net/ipv4/udp.c
int udp_rcv(struct sk_buff *skb){
return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
}
int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
int proto){
sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
if(sk != NULL) {
intret = udp_queue_rcv_skb(sk, skb
}
icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
}
__udp4_lib_lookup_skb是根據(jù)skb來尋找對應(yīng)的socket,當(dāng)找到以后將數(shù)據(jù)包放到socket的緩存隊列里。如果沒有找到,則發(fā)送一個目標(biāo)不可達(dá)的icmp包。
//file: net/ipv4/udp.c
int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb){
......
if(sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
goto drop;
rc = 0;
ipv4_pktinfo_prepare(skb);
bh_lock_sock(sk);
if(!sock_owned_by_user(sk))
rc = __udp_queue_rcv_skb(sk, skb);
else if(sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
bh_unlock_sock(sk);
goto drop;
}
bh_unlock_sock(sk);
return rc;
}
sock_owned_by_user判斷的是用戶是不是正在這個socker上進(jìn)行系統(tǒng)調(diào)用(socket被占用),如果沒有,那就可以直接放到socket的接收隊列中。如果有,那就通過sk_add_backlog把數(shù)據(jù)包添加到backlog隊列。
當(dāng)用戶釋放的socket的時候,內(nèi)核會檢查backlog隊列,如果有數(shù)據(jù)再移動到接收隊列中。
sk_rcvqueues_full接收隊列如果滿了的話,將直接把包丟棄。接收隊列大小受內(nèi)核參數(shù)net.core.rmem_max和net.core.rmem_default影響。
6、recvfrom系統(tǒng)調(diào)用
花開兩朵,各表一枝。上面我們說完了整個Linux內(nèi)核對數(shù)據(jù)包的接收和處理過程,最后把數(shù)據(jù)包放到socket的接收隊列中了。那么我們再回頭看用戶進(jìn)程調(diào)用recvfrom后是發(fā)生了什么。
我們在代碼里調(diào)用的recvfrom是一個glibc的庫函數(shù),該函數(shù)在執(zhí)行后會將用戶進(jìn)行陷入到內(nèi)核態(tài),進(jìn)入到Linux實(shí)現(xiàn)的系統(tǒng)調(diào)用sys_recvfrom。
在理解Linux對sys_revvfrom之前,我們先來簡單看一下socket這個核心數(shù)據(jù)結(jié)構(gòu)。這個數(shù)據(jù)結(jié)構(gòu)太大了,我們只把對和我們今天主題相關(guān)的內(nèi)容畫出來。
如下(socket內(nèi)核數(shù)據(jù)機(jī)構(gòu)):
socket數(shù)據(jù)結(jié)構(gòu)中的const struct proto_ops對應(yīng)的是協(xié)議的方法集合。每個協(xié)議都會實(shí)現(xiàn)不同的方法集,對于IPv4 Internet協(xié)議族來說,每種協(xié)議都有對應(yīng)的處理方法,如下。對于udp來說,是通過inet_dgram_ops來定義的,其中注冊了inet_recvmsg方法。
//file: net/ipv4/af_inet.c
const struct proto_ops inet_stream_ops = {
......
.recvmsg = inet_recvmsg,
.mmap = sock_no_mmap,
......
}
const struct proto_ops inet_dgram_ops = {
......
.sendmsg = inet_sendmsg,
.recvmsg = inet_recvmsg,
......
}
socket數(shù)據(jù)結(jié)構(gòu)中的另一個數(shù)據(jù)結(jié)構(gòu)struct sock *sk是一個非常大,非常重要的子結(jié)構(gòu)體。其中的sk_prot又定義了二級處理函數(shù)。對于UDP協(xié)議來說,會被設(shè)置成UDP協(xié)議實(shí)現(xiàn)的方法集udp_prot。
//file: net/ipv4/udp.c
struct proto udp_prot = {
.name = "UDP",
.owner = THIS_MODULE,
.close = udp_lib_close,
.connect = ip4_datagram_connect,
......
.sendmsg = udp_sendmsg,
.recvmsg = udp_recvmsg,
.sendpage = udp_sendpage,
......
}
看完了socket變量之后,我們再來看sys_revvfrom的實(shí)現(xiàn)過程。
recvfrom函數(shù)內(nèi)部實(shí)現(xiàn)過程:
在inet_recvmsg調(diào)用了sk->sk_prot->recvmsg:
//file: net/ipv4/af_inet.c
int inet_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,size_tsize, int flags){
......
err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
flags & ~MSG_DONTWAIT, &addr_len);
if(err >= 0)
msg->msg_namelen = addr_len;
return err;
}
上面我們說過這個對于udp協(xié)議的socket來說,這個sk_prot就是net/ipv4/udp.c下的struct proto udp_prot。由此我們找到了udp_recvmsg方法。
//file:net/core/datagram.c:EXPORT_SYMBOL(__skb_recv_datagram);
struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned int flags,int*peeked, int *off, int *err){
......
do{
struct sk_buff_head *queue = &sk->sk_receive_queue;
skb_queue_walk(queue, skb) {
......
}
/* User doesn't want to wait */
error = -EAGAIN;
if(!timeo)
goto no_packet;
} while(!wait_for_more_packets(sk, err, &timeo, last));
}
終于:我們找到了我們想要看的重點(diǎn),在上面我們看到了所謂的讀取過程,就是訪問sk->sk_receive_queue。如果沒有數(shù)據(jù),且用戶也允許等待,則將調(diào)用wait_for_more_packets()執(zhí)行等待操作,它加入會讓用戶進(jìn)程進(jìn)入睡眠狀態(tài)。
7、本文小結(jié)
網(wǎng)絡(luò)模塊是操作系統(tǒng)內(nèi)核中最復(fù)雜的模塊了,看起來一個簡簡單單的收包過程就涉及到許多內(nèi)核組件之間的交互,如網(wǎng)卡驅(qū)動、協(xié)議棧、內(nèi)核ksoftirqd線程等,看起來很復(fù)雜。本文想通過圖示的方式,盡量以容易理解的方式來將內(nèi)核收包過程講清楚。
現(xiàn)在讓我們再串一串整個收包過程:當(dāng)用戶執(zhí)行完recvfrom調(diào)用后,用戶進(jìn)程就通過系統(tǒng)調(diào)用進(jìn)行到內(nèi)核態(tài)工作了。如果接收隊列沒有數(shù)據(jù),進(jìn)程就進(jìn)入睡眠狀態(tài)被操作系統(tǒng)掛起。這塊相對比較簡單,剩下大部分的戲份都是由Linux內(nèi)核其它模塊來表演了。
首先在開始收包之前,操作系統(tǒng)要做許多的準(zhǔn)備工作(以Linux為例):
- 1)創(chuàng)建ksoftirqd線程,為它設(shè)置好它自己的線程函數(shù),后面指望著它來處理軟中斷呢;
- 2)協(xié)議棧注冊,linux要實(shí)現(xiàn)許多協(xié)議,比如arp,icmp,ip,udp,tcp,每一個協(xié)議都會將自己的處理函數(shù)注冊一下,方便包來了迅速找到對應(yīng)的處理函數(shù);
- 3)網(wǎng)卡驅(qū)動初始化,每個驅(qū)動都有一個初始化函數(shù),內(nèi)核會讓驅(qū)動也初始化一下。在這個初始化過程中,把自己的DMA準(zhǔn)備好,把NAPI的poll函數(shù)地址告訴內(nèi)核;
- 4)啟動網(wǎng)卡,分配RX,TX隊列,注冊中斷對應(yīng)的處理函數(shù)。
以上是內(nèi)核準(zhǔn)備收包之前的重要工作,當(dāng)上面都ready之后,就可以打開硬中斷,等待數(shù)據(jù)包的到來了。
當(dāng)數(shù)據(jù)到來了以后,第一個迎接它的是網(wǎng)卡(我去,這不是廢話么):
- 1)網(wǎng)卡將數(shù)據(jù)幀DMA到內(nèi)存的RingBuffer中,然后向CPU發(fā)起中斷通知;
- 2)CPU響應(yīng)中斷請求,調(diào)用網(wǎng)卡啟動時注冊的中斷處理函數(shù);
- 3)中斷處理函數(shù)幾乎沒干啥,就發(fā)起了軟中斷請求;
- 4)內(nèi)核線程ksoftirqd線程發(fā)現(xiàn)有軟中斷請求到來,先關(guān)閉硬中斷;
- 5)ksoftirqd線程開始調(diào)用驅(qū)動的poll函數(shù)收包;
- 6)poll函數(shù)將收到的包送到協(xié)議棧注冊的ip_rcv函數(shù)中;
- 7)ip_rcv函數(shù)再講包送到udp_rcv函數(shù)中(對于tcp包就送到tcp_rcv)。
現(xiàn)在,我們可以回到開篇的問題了:我們在用戶層看到的簡單一行recvfrom,Linux內(nèi)核要替我們做如此之多的工作,才能讓我們順利收到數(shù)據(jù)。
這還是簡簡單單的UDP,如果是TCP,內(nèi)核要做的工作更多,不由得感嘆內(nèi)核的開發(fā)者們真的是用心良苦。
理解了整個收包過程以后,我們就能明確知道Linux收一個包的CPU開銷了:
- 1)首先第一塊是用戶進(jìn)程調(diào)用系統(tǒng)調(diào)用陷入內(nèi)核態(tài)的開銷;
- 2)其次第二塊是CPU響應(yīng)包的硬中斷的CPU開銷;
- 3)接著第三塊是ksoftirqd內(nèi)核線程的軟中斷上下文花費(fèi)的。
后面我們再專門發(fā)一篇文章實(shí)際觀察一下這些開銷。
另外:網(wǎng)絡(luò)收發(fā)中有很多末支細(xì)節(jié)咱們并沒有展開了說,比如說:no NAPI, GRO,RPS等。因為我覺得說的太對了反而會影響大家對整個流程的把握,所以盡量只保留主框架了,少即是多!
附錄:更多網(wǎng)絡(luò)編程精華文章
如果您覺得本系列文章過于專業(yè),可先閱讀《網(wǎng)絡(luò)編程懶人入門》系列,目錄如下:
《網(wǎng)絡(luò)編程懶人入門(一):快速理解網(wǎng)絡(luò)通信協(xié)議(上篇)》
《網(wǎng)絡(luò)編程懶人入門(二):快速理解網(wǎng)絡(luò)通信協(xié)議(下篇)》
《網(wǎng)絡(luò)編程懶人入門(三):快速理解TCP協(xié)議一篇就夠》
《網(wǎng)絡(luò)編程懶人入門(四):快速理解TCP和UDP的差異》
《網(wǎng)絡(luò)編程懶人入門(五):快速理解為什么說UDP有時比TCP更有優(yōu)勢》
《網(wǎng)絡(luò)編程懶人入門(六):史上最通俗的集線器、交換機(jī)、路由器功能原理入門》
《網(wǎng)絡(luò)編程懶人入門(七):深入淺出,全面理解HTTP協(xié)議》
《網(wǎng)絡(luò)編程懶人入門(八):手把手教你寫基于TCP的Socket長連接》
《網(wǎng)絡(luò)編程懶人入門(九):通俗講解,有了IP地址,為何還要用MAC地址?》
本文已同步發(fā)布于“即時通訊技術(shù)圈”公眾號。

▲ 本文在公眾號上的鏈接是:點(diǎn)此進(jìn)入,原文鏈接是:http://www.52im.net/thread-3247-1-1.html