六 歸并排序
算法思想是每次把待排序列分成兩部分,分別對這兩部分遞歸地用歸并排序,完成后把這兩個子部分合并成一個
序列。
歸并排序借助一個全局性臨時數(shù)組來方便對子序列的歸并,該算法核心在于歸并。
package algorithms;
import java.lang.reflect.Array;
/**
* @author yovn
*
*/
public class MergeSorter<E extends Comparable<E>> extends Sorter<E> {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@SuppressWarnings("unchecked")
@Override
public void sort(E[] array, int from, int len) {
if(len<=1)return;
E[] temporary=(E[])Array.newInstance(array[0].getClass(),len);
merge_sort(array,from,from+len-1,temporary);
}
private final void merge_sort(E[] array, int from, int to, E[] temporary) {
if(to<=from)
{
return;
}
int middle=(from+to)/2;
merge_sort(array,from,middle,temporary);
merge_sort(array,middle+1,to,temporary);
merge(array,from,to,middle,temporary);
}
private final void merge(E[] array, int from, int to, int middle, E[] temporary) {
int k=0,leftIndex=0,rightIndex=to-from;
System.arraycopy(array, from, temporary, 0, middle-from+1);
for(int i=0;i<to-middle;i++)
{
temporary[to-from-i]=array[middle+i+1];
}
while(k<to-from+1)
{
if(temporary[leftIndex].compareTo(temporary[rightIndex])<0)
{
array[k+from]=temporary[leftIndex++];
}
else
{
array[k+from]=temporary[rightIndex--];
}
k++;
}
}
}
七 堆排序
堆是一種完全二叉樹,一般使用數(shù)組來實現(xiàn)。
堆主要有兩種核心操作,
1)從指定節(jié)點向上調整(shiftUp)
2)從指定節(jié)點向下調整(shiftDown)
建堆,以及刪除堆定節(jié)點使用shiftDwon,而在插入節(jié)點時一般結合兩種操作一起使用。
堆排序借助最大值堆來實現(xiàn),第i次從堆頂移除最大值放到數(shù)組的倒數(shù)第i個位置,然后shiftDown到倒數(shù)第i+1個位置,一共執(zhí)行N此調整,即完成排序。
顯然,堆排序也是一種選擇性的排序,每次選擇第i大的元素。
package algorithms;
/**
* @author yovn
*
*/
public class HeapSorter<E extends Comparable<E>> extends Sorter<E> {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
build_heap(array,from,len);
for(int i=0;i<len;i++)
{
//swap max value to the (len-i)-th position
swap(array,from,from+len-1-i);
shift_down(array,from,len-1-i,0);//always shiftDown from 0
}
}
private final void build_heap(E[] array, int from, int len) {
int pos=(len-1)/2;//we start from (len-1)/2, because branch's node +1=leaf's node, and all leaf node is already a heap
for(int i=pos;i>=0;i--)
{
shift_down(array,from,len,i);
}
}
private final void shift_down(E[] array,int from, int len, int pos)
{
E tmp=array[from+pos];
int index=pos*2+1;//use left child
while(index<len)//until no child
{
if(index+1<len&&array[from+index].compareTo(array[from+index+1])<0)//right child is bigger
{
index+=1;//switch to right child
}
if(tmp.compareTo(array[from+index])<0)
{
array[from+pos]=array[from+index];
pos=index;
index=pos*2+1;
}
else
{
break;
}
}
array[from+pos]=tmp;
}
}
八 桶式排序
桶式排序不再是基于比較的了,它和基數(shù)排序同屬于分配類的排序,這類排序的特點是事先要知道待排序列的一些特征。
桶式排序事先要知道待排序列在一個范圍內,而且這個范圍應該不是很大的。
比如知道待排序列在[0,M)內,那么可以分配M個桶,第I個桶記錄I的出現(xiàn)情況,最后根據(jù)每個桶收到的位置信息把數(shù)據(jù)輸出成有序的形式。
這里我們用兩個臨時性數(shù)組,一個用于記錄位置信息,一個用于方便輸出數(shù)據(jù)成有序方式,另外我們假設數(shù)據(jù)落在0到MAX,如果所給數(shù)據(jù)不是從0開始,你可以把每個數(shù)減去最小的數(shù)。
package algorithms;
/**
* @author yovn
*
*/
public class BucketSorter {
public void sort(int[] keys,int from,int len,int max)
{
int[] temp=new int[len];
int[] count=new int[max];
for(int i=0;i<len;i++)
{
count[keys[from+i]]++;
}
//calculate position info
for(int i=1;i<max;i++)
{
count[i]=count[i]+count[i-1];//this means how many number which is less or equals than i,thus it is also position + 1
}
System.arraycopy(keys, from, temp, 0, len);
for(int k=len-1;k>=0;k--)//from the ending to beginning can keep the stability
{
keys[--count[temp[k]]]=temp[k];// position +1 =count
}
}
/**
* @param args
*/
public static void main(String[] args) {
int[] a={1,4,8,3,2,9,5,0,7,6,9,10,9,13,14,15,11,12,17,16};
BucketSorter sorter=new BucketSorter();
sorter.sort(a,0,a.length,20);//actually is 18, but 20 will also work
for(int i=0;i<a.length;i++)
{
System.out.print(a[i]+",");
}
}
}
九 基數(shù)排序
基數(shù)排序可以說是擴展了的桶式排序,比如當待排序列在一個很大的范圍內,比如0到999999內,那么用桶式排序是很浪費空間的。而基數(shù)排序把每個排序碼拆成由d個排序碼,比如任何一個6位數(shù)(不滿六位前面補0)拆成6個排序碼,分別是個位的,十位的,百位的。。。。
排序時,分6次完成,每次按第i個排序碼來排。
一般有兩種方式:
1) 高位優(yōu)先(MSD): 從高位到低位依次對序列排序
2)低位優(yōu)先(LSD): 從低位到高位依次對序列排序
計算機一般采用低位優(yōu)先法(人類一般使用高位優(yōu)先),但是采用低位優(yōu)先時要確保排序算法的穩(wěn)定性。
基數(shù)排序借助桶式排序,每次按第N位排序時,采用桶式排序。對于如何安排每次落入同一個桶中的數(shù)據(jù)有兩種安排方法:
1)順序存儲:每次使用桶式排序,放入r個桶中,,相同時增加計數(shù)。
2)鏈式存儲:每個桶通過一個靜態(tài)隊列來跟蹤。
package algorithms;
import java.util.Arrays;
/**
* @author yovn
*
*/
public class RadixSorter {
public static boolean USE_LINK=true;
/**
*
* @param keys
* @param from
* @param len
* @param radix key's radix
* @param d how many sub keys should one key divide to
*/
public void sort(int[] keys,int from ,int len,int radix, int d)
{
if(USE_LINK)
{
link_radix_sort(keys,from,len,radix,d);
}
else
{
array_radix_sort(keys,from,len,radix,d);
}
}
private final void array_radix_sort(int[] keys, int from, int len, int radix,
int d)
{
int[] temporary=new int[len];
int[] count=new int[radix];
int R=1;
for(int i=0;i<d;i++)
{
System.arraycopy(keys, from, temporary, 0, len);
Arrays.fill(count, 0);
for(int k=0;k<len;k++)
{
int subkey=(temporary[k]/R)%radix;
count[subkey]++;
}
for(int j=1;j<radix;j++)
{
count[j]=count[j]+count[j-1];
}
for(int m=len-1;m>=0;m--)
{
int subkey=(temporary[m]/R)%radix;
--count[subkey];
keys[from+count[subkey]]=temporary[m];
}
R*=radix;
}
}
private static class LinkQueue
{
int head=-1;
int tail=-1;
}
private final void link_radix_sort(int[] keys, int from, int len, int radix, int d) {
int[] nexts=new int[len];
LinkQueue[] queues=new LinkQueue[radix];
for(int i=0;i<radix;i++)
{
queues[i]=new LinkQueue();
}
for(int i=0;i<len-1;i++)
{
nexts[i]=i+1;
}
nexts[len-1]=-1;
int first=0;
for(int i=0;i<d;i++)
{
link_radix_sort_distribute(keys,from,len,radix,i,nexts,queues,first);
first=link_radix_sort_collect(keys,from,len,radix,i,nexts,queues);
}
int[] tmps=new int[len];
int k=0;
while(first!=-1)
{
tmps[k++]=keys[from+first];
first=nexts[first];
}
System.arraycopy(tmps, 0, keys, from, len);
}
private final void link_radix_sort_distribute(int[] keys, int from, int len,
int radix, int d, int[] nexts, LinkQueue[] queues,int first) {
for(int i=0;i<radix;i++)queues[i].head=queues[i].tail=-1;
while(first!=-1)
{
int val=keys[from+first];
for(int j=0;j<d;j++)val/=radix;
val=val%radix;
if(queues[val].head==-1)
{
queues[val].head=first;
}
else
{
nexts[queues[val].tail]=first;
}
queues[val].tail=first;
first=nexts[first];
}
}
private int link_radix_sort_collect(int[] keys, int from, int len,
int radix, int d, int[] nexts, LinkQueue[] queues) {
int first=0;
int last=0;
int fromQueue=0;
for(;(fromQueue<radix-1)&&(queues[fromQueue].head==-1);fromQueue++);
first=queues[fromQueue].head;
last=queues[fromQueue].tail;
while(fromQueue<radix-1&&queues[fromQueue].head!=-1)
{
fromQueue+=1;
for(;(fromQueue<radix-1)&&(queues[fromQueue].head==-1);fromQueue++);
nexts[last]=queues[fromQueue].head;
last=queues[fromQueue].tail;
}
if(last!=-1)nexts[last]=-1;
return first;
}
/**
* @param args
*/
public static void main(String[] args) {
int[] a={1,4,8,3,2,9,5,0,7,6,9,10,9,135,14,15,11,222222222,1111111111,12,17,45,16};
USE_LINK=true;
RadixSorter sorter=new RadixSorter();
sorter.sort(a,0,a.length,10,10);
for(int i=0;i<a.length;i++)
{
System.out.print(a[i]+",");
}
}
}