<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    Ytl's Java Blog

    厚積而薄發---每一天都是一個全新的開始
      BlogJava :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

    置頂隨筆

         摘要: 歐幾里德算法  閱讀全文

    posted @ 2013-03-21 09:39 ytl 閱讀(312) | 評論 (0)編輯 收藏

    Quicksort

    Quicksort is a fast sorting algorithm, which is used not only for educational purposes, but widely applied in practice. On the average, it has O(n log n) complexity, making quicksort suitable for sorting big data volumes. The idea of the algorithm is quite simple and once you realize it, you can write quicksort as fast as bubble sort.

    Algorithm

    The divide-and-conquer strategy is used in quicksort. Below the recursion step is described:
    1. Choose a pivot value. We take the value of the middle element as pivot value, but it can be any value, which is in range of sorted values, even if it doesn't present in the array.
    2. Partition. Rearrange elements in such a way, that all elements which are lesser than the pivot go to the left part of the array and all elements greater than the pivot, go to the right part of the array. Values equal to the pivot can stay in any part of the array. Notice, that array may be divided in non-equal parts.
    3. Sort both parts. Apply quicksort algorithm recursively to the left and the right parts.

    Partition algorithm in detail

    There are two indices i and j and at the very beginning of the partition algorithm i points to the first element in the array andj points to the last one. Then algorithm moves i forward, until an element with value greater or equal to the pivot is found. Index j is moved backward, until an element with value lesser or equal to the pivot is found. If i ≤ j then they are swapped and i steps to the next position (i + 1), j steps to the previous one (j - 1). Algorithm stops, when i becomes greater than j.

    After partition, all values before i-th element are less or equal than the pivot and all values after j-th element are greater or equal to the pivot.

    Example. Sort {1, 12, 5, 26, 7, 14, 3, 7, 2} using quicksort.

    Quicksort example

    Notice, that we show here only the first recursion step, in order not to make example too long. But, in fact, {1, 2, 5, 7, 3} and {14, 7, 26, 12} are sorted then recursively.

    Why does it work?

    On the partition step algorithm divides the array into two parts and every element a from the left part is less or equal than every element b from the right part. Also a and b satisfy a ≤ pivot ≤ b inequality. After completion of the recursion calls both of the parts become sorted and, taking into account arguments stated above, the whole array is sorted.

    Complexity analysis

    On the average quicksort has O(n log n) complexity, but strong proof of this fact is not trivial and not presented here. Still, you can find the proof in [1]. In worst case, quicksort runs O(n2) time, but on the most "practical" data it works just fine and outperforms other O(n log n) sorting algorithms.

    Code snippets

    Java

    int partition(int arr[], int left, int right)

    {

         int i = left;

         int j = right;

         int temp;

        int  pivot = arr[(left+right)>>1];

         while(i<=j){

            while(arr[i]>=pivot){

                i++;

            }

            while(arr[j]<=pivot){

                j--;

           }

           if(i<=j){

               temp = arr[i];

               arr[i] = arr[j];

               arr[j] = temp;

               i++;

               j--;

           }

        }

        return i

    }

     

    void quickSort(int arr[], int left, int right) {

          int index = partition(arr, left, right);

          if(left<index-1){

             quickSort(arr,left,index-1);

          }

          if(index<right){

             quickSort(arr,index,right); 

          }

    }

    python

    def quickSort(L,left,right) {

          i = left

          j = right

          if right-left <=1:

                return L

          pivot = L[(left + right) >>1];

          /* partition */

          while (i <= j) {

                while (L[i] < pivot)

                      i++;

                while (L[j] > pivot)

                      j--;

                if (i <= j) {

                      L[i],L[j] = L[j],L[i]

                      i++;

                      j--;

                }

          };

          /* recursion */

          if (left < j)

                quickSort(Lleftj);

          if (i < right)

                quickSort(Liright);

    }

    posted @ 2011-05-08 14:13 ytl| 編輯 收藏

    Insertion Sort

    Insertion sort belongs to the O(n2) sorting algorithms. Unlike many sorting algorithms with quadratic complexity, it is actually applied in practice for sorting small arrays of data. For instance, it is used to improve quicksort routine. Some sources notice, that people use same algorithm ordering items, for example, hand of cards.

    Algorithm

    Insertion sort algorithm somewhat resembles selection sort. Array is imaginary divided into two parts - sorted one andunsorted one. At the beginning, sorted part contains first element of the array and unsorted one contains the rest. At every step, algorithm takes first element in the unsorted part and inserts it to the right place of the sorted one. Whenunsorted part becomes empty, algorithm stops. Sketchy, insertion sort algorithm step looks like this:

    Insertion sort sketchy, before insertion

    becomes

    Insertion sort sketchy, after insertion

    The idea of the sketch was originaly posted here.

    Let us see an example of insertion sort routine to make the idea of algorithm clearer.

    Example. Sort {7, -5, 2, 16, 4} using insertion sort.

    Insertion sort example

    The ideas of insertion

    The main operation of the algorithm is insertion. The task is to insert a value into the sorted part of the array. Let us see the variants of how we can do it.

    "Sifting down" using swaps

    The simplest way to insert next element into the sorted part is to sift it down, until it occupies correct position. Initially the element stays right after the sorted part. At each step algorithm compares the element with one before it and, if they stay in reversed order, swap them. Let us see an illustration.

    insertion sort, sift down illustration

    This approach writes sifted element to temporary position many times. Next implementation eliminates those unnecessary writes.

    Shifting instead of swapping

    We can modify previous algorithm, so it will write sifted element only to the final correct position. Let us see an illustration.

    insertion sort, shifting illustration

    It is the most commonly used modification of the insertion sort.

    Using binary search

    It is reasonable to use binary search algorithm to find a proper place for insertion. This variant of the insertion sort is calledbinary insertion sort. After position for insertion is found, algorithm shifts the part of the array and inserts the element. This version has lower number of comparisons, but overall average complexity remains O(n2). From a practical point of view this improvement is not very important, because insertion sort is used on quite small data sets.

    Complexity analysis

    Insertion sort's overall complexity is O(n2) on average, regardless of the method of insertion. On the almost sorted arrays insertion sort shows better performance, up to O(n) in case of applying insertion sort to a sorted array. Number of writes is O(n2) on average, but number of comparisons may vary depending on the insertion algorithm. It is O(n2) when shifting or swapping methods are used and O(n log n) for binary insertion sort.

    From the point of view of practical application, an average complexity of the insertion sort is not so important. As it was mentioned above, insertion sort is applied to quite small data sets (from 8 to 12 elements). Therefore, first of all, a "practical performance" should be considered. In practice insertion sort outperforms most of the quadratic sorting algorithms, like selection sort or bubble sort.

    Insertion sort properties

    • adaptive (performance adapts to the initial order of elements);
    • stable (insertion sort retains relative order of the same elements);
    • in-place (requires constant amount of additional space);
    • online (new elements can be added during the sort).

    Code snippets

    We show the idea of insertion with shifts in Java implementation and the idea of insertion using python code snippet.

    Java implementation

    void insertionSort(int[] arr) {

          int i,j,newValue;

          for(i=1;i<arr.length;i++){

               newValue = arr[i];

               j=i;

               while(j>0&&arr[j-1]>newValue){

                   arr[j] = arr[j-1];

                   j--;

               }

               arr[j] = newValue;

    }

    Python implementation

    void insertionSort(L) {

          for i in range(l,len(L)):

                j = i

                newValue = L[i]

                while j > 0 and  L[j - 1] >L[j]:

                     L[j] = L[j - 1]

                      j = j-1

                }

                L[j] = newValue

          }

    }

    posted @ 2011-05-08 12:24 ytl| 編輯 收藏

    Binary search algorithm

    Generally, to find a value in unsorted array, we should look through elements of an array one by one, until searched value is found. In case of searched value is absent from array, we go through all elements. In average, complexity of such an algorithm is proportional to the length of the array.

    Situation changes significantly, when array is sorted. If we know it, random access capability can be utilized very efficientlyto find searched value quick. Cost of searching algorithm reduces to binary logarithm of the array length. For reference, log2(1 000 000) ≈ 20. It means, that in worst case, algorithm makes 20 steps to find a value in sorted array of a million elements or to say, that it doesn't present it the array.

    Algorithm

    Algorithm is quite simple. It can be done either recursively or iteratively:

    1. get the middle element;
    2. if the middle element equals to the searched value, the algorithm stops;
    3. otherwise, two cases are possible:
      • searched value is less, than the middle element. In this case, go to the step 1 for the part of the array, before middle element.
      • searched value is greater, than the middle element. In this case, go to the step 1 for the part of the array, after middle element.
    Now we should define, when iterations should stop. First case is when searched element is found. Second one is when subarray has no elements. In this case, we can conclude, that searched value doesn't present in the array.

    Examples

    Example 1. Find 6 in {-1, 5, 6, 18, 19, 25, 46, 78, 102, 114}.

    Step 1 (middle element is 19 > 6):     -1  5  6  18  19  25  46  78  102  114

    Step 2 (middle element is 5 < 6):      -1  5  6  18  19  25  46  78  102  114

    Step 3 (middle element is 6 == 6):     -1  5  6  18  19  25  46  78  102  114

    Example 2. Find 103 in {-1, 5, 6, 18, 19, 25, 46, 78, 102, 114}.

    Step 1 (middle element is 19 < 103):   -1  5  6  18  19  25  46  78  102  114

    Step 2 (middle element is 78 < 103):   -1  5  6  18  19  25  46  78  102  114

    Step 3 (middle element is 102 < 103):  -1  5  6  18  19  25  46  78  102  114

    Step 4 (middle element is 114 > 103):  -1  5  6  18  19  25  46  78  102  114

    Step 5 (searched value is absent):     -1  5  6  18  19  25  46  78  102  114

    Complexity analysis

    Huge advantage of this algorithm is that it's complexity depends on the array size logarithmically in worst case. In practice it means, that algorithm will do at most log2(n) iterations, which is a very small number even for big arrays. It can be proved very easily. Indeed, on every step the size of the searched part is reduced by half. Algorithm stops, when there are no elements to search in. Therefore, solving following inequality in whole numbers:

    n / 2iterations > 0

    resulting in

    iterations <= log2(n).

    It means, that binary search algorithm time complexity is O(log2(n)).

    Code snippets.

    You can see recursive solution for Java and iterative for python below.

    Java

    int binarySearch(int[] array, int value, int left, int right) {

          if (left > right)

                return -1;

          int middle = left + (right-left) / 2;

          if (array[middle] == value)

                return middle;

          if (array[middle] > value)

                return binarySearch(array, value, left, middle - 1);

          else

                return binarySearch(array, value, middle + 1, right);           

    }

    Python

    def biSearch(L,e,first,last):

          if last - first < 2: return L[first] == e or L[last] == e

          mid = first + (last-first)/2

          if L[mid] ==e: return True

          if L[mid]> e : 

                return biSearch(L,e,first,mid-1)

          return biSearch(L,e,mid+1,last)

          

    posted @ 2011-05-06 18:11 ytl| 編輯 收藏

    Merge sort is an O(n log ncomparison-based sorting algorithm. Most implementations produce a stable sort, meaning that the implementation preserves the input order of equal elements in the sorted output. It is a divide and conquer algorithm. Merge sort was invented by John von Neumann in 1945. A detailed description and analysis of bottom-up mergesort appeared in a report byGoldstine and Neumann as early as 1948
     divide and conquer algorithm: 1, split the problem into several subproblem of the same type. 2,solove independetly. 3 combine those solutions



    Python Implement
      
      def mergeSort(L):
           
             if len(L) < 2 :
                   return  L
             middle = len(L)/2
             left = mergeSort(L[:mddle])
             right = mergeSort(L[middle:])
             together = merge(left,right)
             return together

    posted @ 2011-05-06 17:05 ytl| 編輯 收藏

    Algorithm to merge sorted arrays

    In the article we present an algorithm for merging two sorted arrays. One can learn how to operate with several arrays and master read/write indices. Also, the algorithm has certain applications in practice, for instance in merge sort.

    Merge algorithm

    Assume, that both arrays are sorted in ascending order and we want resulting array to maintain the same order. Algorithm to merge two arrays A[0..m-1] and B[0..n-1] into an array C[0..m+n-1] is as following:

    1. Introduce read-indices ij to traverse arrays A and B, accordingly. Introduce write-index k to store position of the first free cell in the resulting array. By default i = j = k = 0.
    2. At each step: if both indices are in range (i < m and j < n), choose minimum of (A[i], B[j]) and write it toC[k]. Otherwise go to step 4.
    3. Increase k and index of the array, algorithm located minimal value at, by one. Repeat step 2.
    4. Copy the rest values from the array, which index is still in range, to the resulting array.

    Enhancements

    Algorithm could be enhanced in many ways. For instance, it is reasonable to check, if A[m - 1] < B[0] orB[n - 1] < A[0]. In any of those cases, there is no need to do more comparisons. Algorithm could just copy source arrays in the resulting one in the right order. More complicated enhancements may include searching for interleaving parts and run merge algorithm for them only. It could save up much time, when sizes of merged arrays differ in scores of times.

    Complexity analysis

    Merge algorithm's time complexity is O(n + m). Additionally, it requires O(n + m) additional space to store resulting array.

    Code snippets

    Java implementation

    // size of C array must be equal or greater than

    // sum of A and B arrays' sizes

    public void merge(int[] A, int[] B, int[] C) {

          int i,j,k ;

          i = 0;

          j=0;

          k=0;

          m = A.length;

          n = B.length;

          while(i < m && j < n){

              if(A[i]<= B[j]){

                  C[k] = A[i];

                  i++;

              }else{

                  C[k] = B[j];

                  j++;

           }

           k++;

           while(i<m){

             C[k] = A[i]

             i++;

             k++;

          }

          while(j<n){

             C[k] = B[j] 

             j++;

              k++;

     }


    Python  implementation

    def merege(left,right):

        result = []

        i,j = 0

       while i< len(left) and j < len(right):

            if left[i]<= right[j]:

                result.append(left[i])

                i = i + 1

            else:

                result.append(right[j])

                j = j + 1

        while i< len(left):

               result.append(left[i])

               i = i + 1

        while j< len(right):

               result.append(right[j])

               j = j + 1

        return result

      
    MergSort:

    import operator

    def mergeSort(L, compare = operator.lt):
         if len(L) < 2:
              return L[:]
         else:
              middle = int(len(L)/2)
              left = mergeSort(L[:middle], compare)
              right= mergeSort(L[middle:], compare)
              return merge(left, right, compare)

    def merge(left, right, compare):
         result = []
         i, j = 0, 0

         while i < len(left) and j < len(right):
              if compare(left[i], right[j]):
                   result.append(left[i])
                   i += 1
              else:
                    result.append(right[j])
                    j += 1
         while i < len(left):
              result.append(left[i])
              i += 1
         while j < len(right):
              result.append(right[j])
              j += 1
         return result
                   

    posted @ 2011-05-06 16:55 ytl| 編輯 收藏

    Selection Sort

    Selection sort is one of the O(n2) sorting algorithms, which makes it quite inefficient for sorting large data volumes. Selection sort is notable for its programming simplicity and it can over perform other sorts in certain situations (see complexity analysis for more details).

    Algorithm

    The idea of algorithm is quite simple. Array is imaginary divided into two parts - sorted one and unsorted one. At the beginning, sorted part is empty, while unsorted one contains whole arrayAt every step, algorithm finds minimal element in the unsorted part and adds it to the end of the sorted one. When unsorted part becomes empty, algorithmstops.

    When algorithm sorts an array, it swaps first element of unsorted part with minimal element and then it is included to the sorted part. This implementation of selection sort in not stable. In case of linked list is sorted, and, instead of swaps, minimal element is linked to the unsorted part, selection sort is stable.

    Let us see an example of sorting an array to make the idea of selection sort clearer.

    Example. Sort {5, 1, 12, -5, 16, 2, 12, 14} using selection sort.

    Selection sort example

    Complexity analysis

    Selection sort stops, when unsorted part becomes empty. As we know, on every step number of unsorted elements decreased by one. Therefore, selection sort makes n steps (n is number of elements in array) of outer loop, before stop. Every step of outer loop requires finding minimum in unsorted part. Summing up, n + (n - 1) + (n - 2) + ... + 1, results in O(n2) number of comparisons. Number of swaps may vary from zero (in case of sorted array) to n - 1 (in case array was sorted in reversed order), which results in O(n) number of swaps. Overall algorithm complexity is O(n2).

    Fact, that selection sort requires n - 1 number of swaps at most, makes it very efficient in situations, when write operation is significantly more expensive, than read operation.

    Code snippets

    Java

    public void selectionSort(int[] arr) {

          int i, j, minIndex, tmp;

          int n = arr.length;

          for (i = 0; i < n - 1; i++) {

                minIndex = i;

                for (j = i + 1; j < n; j++)

                      if (arr[j] < arr[minIndex])

                            minIndex = j;

                if (minIndex != i) {

                      tmp = arr[i];

                      arr[i] = arr[minIndex];

                      arr[minIndex] = tmp;

                }

          }

    }

    Python

         for i in range(len(L)-1):
              minIndex = i
              minValue = L[i]
              j = i + 1
              while j< len(L):
                   if minValue > L[j]:
                        minIndex = j
                        minValue = L[j]
                   j += 1
              if minIndex != i:
                   temp       = L[i]
                   L[i]       = L[minIndex]
                   L[minIndex] = temp


    posted @ 2011-05-06 16:16 ytl| 編輯 收藏

    Bubble Sort

    Bubble sort is a simple and well-known sorting algorithm. It is used in practice once in a blue moon and its main application is to make an introduction to the sorting algorithms. Bubble sort belongs to O(n2) sorting algorithms, which makes it quite inefficient for sorting large data volumes. Bubble sort is stable and adaptive.

    Algorithm

    1. Compare each pair of adjacent elements from the beginning of an array and, if they are in reversed order, swap them.
    2. If at least one swap has been done, repeat step 1.

    You can imagine that on every step big bubbles float to the surface and stay there. At the step, when no bubble moves, sorting stops. Let us see an example of sorting an array to make the idea of bubble sort clearer.

    Example. Sort {5, 1, 12, -5, 16} using bubble sort.

    Bubble sort example

    Complexity analysis

    Average and worst case complexity of bubble sort is O(n2). Also, it makes O(n2) swaps in the worst case. Bubble sort is adaptive. It means that for almost sorted array it gives O(n) estimation. Avoid implementations, which don't check if the array is already sorted on every step (any swaps made). This check is necessary, in order to preserve adaptive property.

    Turtles and rabbits

    One more problem of bubble sort is that its running time badly depends on the initial order of the elements. Big elements (rabbits) go up fast, while small ones (turtles) go down very slow. This problem is solved in the Cocktail sort.

    Turtle example. Thought, array {2, 3, 4, 5, 1} is almost sorted, it takes O(n2) iterations to sort an array. Element {1} is a turtle.

    Turtle example

    Rabbit example. Array {6, 1, 2, 3, 4, 5} is almost sorted too, but it takes O(n) iterations to sort it. Element {6} is a rabbit. This example demonstrates adaptive property of the bubble sort.

    Rabbit example

    Code snippets

    There are several ways to implement the bubble sort. Notice, that "swaps" check is absolutely necessary, in order to preserve adaptive property.

    Java

    public void bubbleSort(int[] arr) {

          boolean swapped = true;

          int j = 0;

          int tmp;

          while (swapped) {

                swapped = false;

                j++;

               for (int i = 0; i < arr.length - j; i++) {                               

                      if (arr[i] > arr[i + 1]) {                          

                            tmp = arr[i];

                            arr[i] = arr[i + 1];

                            arr[i + 1] = tmp;

                            swapped = true;

                      }

                }                

          }

    }

    Python

    def bubbleSort(L) :

        swapped = True;

        while swapped:

            swapped = False

            for i in range(len(L)-1):

                if L[i]>L[i+1]:

                    temp = L[i]

                    L[i] = L[i+1]

                    L[i+1] = temp

                    swapped = True

    posted @ 2011-05-06 16:03 ytl| 編輯 收藏


     JNDI : Java Naming and Directory Interface (JNDI)
    JNDI works in concert with other technologies in the Java Platform, Enterprise Edition (Java EE) to organize and locate components in a distributed computing environment.
    翻譯:JNDI  在Java平臺企業級開發的分布式計算環境以組織和查找組件方式與其他技術協同工作。

    Tomcat 6.0 的數據源配置
     

    給大家我的配置方式:

    1,在Tomcat中配置:
        tomcat 安裝目錄下的conf的context.xml 的
       <Context></Context>中
    添加代碼如下:


        
    <Resource  name="jdbc/tango"
                auth
    ="Container"
            type
    ="javax.sql.DataSource"
                maxActive
    ="20"
                maxIdel
    ="10"
                maxWait
    ="1000"
                username
    ="root"
                password
    ="root"
        driverClassName
    ="com.mysql.jdbc.Driver"        url="jdbc:mysql://localhost:3306/tango"
            
    >
        
          
    </Resource> 
    其中:
    name 表示指定的jndi名稱
    auth 表示認證方式,一般為Container
    type 表示數據源床型,使用標準的javax.sql.DataSource
    maxActive 表示連接池當中最大的數據庫連接
    maxIdle 表示最大的空閑連接數
    maxWait 當池的數據庫連接已經被占用的時候,最大等待時間
    username 表示數據庫用戶名
    password 表示數據庫用戶的密碼
    driverClassName 表示JDBC DRIVER
    url 表示數據庫URL地址


    同時你需要把你使用的數據驅動jar包放到Tomcat的lib目錄下。
    如果你使用其他數據源如DBCP數據源,需要在<Resouce 標簽多添加一個屬性如
      factory="org.apache.commons.dbcp.BasicDataSourceFactory"
    當然你也要把DBCP相關jar包放在tomcat的lib目錄下。

    這樣的好處是,以后的項目需要這些jar包,可以共享適合于項目實施階段。
    如果是個人開發階段一個tomcat下部署多個項目,在啟動時消耗時間,同時
    可能不同項目用到不用數據源帶來麻煩。所以有配置方法2

    2在項目的中配置:

    2.1  使用自己的DBCP數據源
    在WebRoot下面建文件夾META-INF,里面建一個文件context.xml,
    添加內容和 配置1一樣
    同時加上<Resouce 標簽多添加一個屬性如
     factory="org.apache.commons.dbcp.BasicDataSourceFactory"


    這樣做的:可以把配置需要jar包直接放在WEB-INF的lib里面 和web容器(Tomcat)無關

    總后一點:提醒大家,有個同學可能說 tomacat的有DBCP的jar包,確實tomcat把它放了
    進去,你就認為不用添加DBCP數據源的jar包,也按照上面的配置,100%你要出錯。
    因為tomcat重新打包了相應的jar,你應該把 
    factory="org.apache.tomcat.dbcp.dbcp.BasicDataSourceFactory" 改為
      factory="org.apache.commons.dbcp.BasicDataSourceFactory"
      

    同時加上DBCP 所依賴的jar包(commons-dbcp.jar和commons-pool.jar)
    你可以到www.apache.org 項目的commons里面找到相關的內容

    2.2 使用Tomcat 自帶的DBCP數據源

    在WebRoot下面建文件夾META-INF,里面建一個文件context.xml,
    添加相應的內容
    這是可以不需要添加配置
    配置1一樣
     factory="org.apache.tomcat.dbcp.dbcp.BasicDataSourceFactory"

    也不要想添加額外的jar包

    最后,不管使用哪種配置,都需要把數據庫驅動jar包放在目錄tomcat /lib里面

    JNDI使用示例代碼:

    Context initContext;
    try 
    {
       Context context
    =new
     InitialContext(); 
       DataSource ds
    =(DataSource) context.lookup("java:/comp/env/jdbc/tango"
    );  
    //
     "java:/comp/env/"是固定寫法,后面接的是 context.xml中的Resource中name屬性的值 
        Connection conn = ds.getConnection();
        Statement stmt 
    =
     conn.createStatement();
        ResultSet set 
    = stmt.executeQuery("SELECT id,name,age FROM user_lzy"
    );
        
    while(set.next())
    {
    System.out.println(set.getString(
    "name"
    ));
        }

        
    //etc.
    }
     catch (NamingException e) {
        
    // TODO Auto-generated catch block

        e.printStackTrace();
    }
     catch (SQLException e) {
        
    // TODO Auto-generated catch block

        e.printStackTrace();
    }

    謝謝!

    posted @ 2009-04-14 17:10 ytl 閱讀(8087) | 評論 (6)編輯 收藏

    2013年3月21日

         摘要: 歐幾里德算法  閱讀全文

    posted @ 2013-03-21 09:39 ytl 閱讀(312) | 評論 (0)編輯 收藏

    2012年3月1日


    淺談java內存模型 

           不同的平臺,內存模型是不一樣的,但是jvm的內存模型規范是統一的。其實java的多線程并發問題最終都會反映在java的內存模型上,所謂線程安全無 非是要控制多個線程對某個資源的有序訪問或修改。總結java的內存模型,要解決兩個主要的問題:可見性和有序性。我們都知道計算機有高速緩存的存在,處 理器并不是每次處理數據都是取內存的。JVM定義了自己的內存模型,屏蔽了底層平臺內存管理細節,對于java開發人員,要清楚在jvm內存模型的基礎 上,如果解決多線程的可見性和有序性。
           那么,何謂可見性? 多個線程之間是不能互相傳遞數據通信的,它們之間的溝通只能通過共享變量來進行。Java內存模型(JMM)規定了jvm有主內存,主內存是多個線程共享 的。當new一個對象的時候,也是被分配在主內存中,每個線程都有自己的工作內存,工作內存存儲了主存的某些對象的副本,當然線程的工作內存大小是有限制 的。當線程操作某個對象時,執行順序如下:
     (1) 從主存復制變量到當前工作內存 (read and load)
     (2) 執行代碼,改變共享變量值 (use and assign)
     (3) 用工作內存數據刷新主存相關內容 (store and write)

    JVM規范定義了線程對主存的操作指 令:read,load,use,assign,store,write。當一個共享變量在多個線程的工作內存中都有副本時,如果一個線程修改了這個共享 變量,那么其他線程應該能夠看到這個被修改后的值,這就是多線程的可見性問題。
            那么,什么是有序性呢 ?線程在引用變量時不能直接從主內存中引用,如果線程工作內存中沒有該變量,則會從主內存中拷貝一個副本到工作內存中,這個過程為read-load,完 成后線程會引用該副本。當同一線程再度引用該字段時,有可能重新從主存中獲取變量副本(read-load-use),也有可能直接引用原來的副本 (use),也就是說 read,load,use順序可以由JVM實現系統決定。
            線程不能直接為主存中中字段賦值,它會將值指定給工作內存中的變量副本(assign),完成后這個變量副本會同步到主存儲區(store- write),至于何時同步過去,根據JVM實現系統決定.有該字段,則會從主內存中將該字段賦值到工作內存中,這個過程為read-load,完成后線 程會引用該變量副本,當同一線程多次重復對字段賦值時,比如:
    Java代碼 
    for(int i=0;i<10;i++)   
     a++;  
    線程有可能只對工作內存中的副本進行賦值,只到最后一次賦值后才同步到主存儲區,所以assign,store,weite順序可以由JVM實現系統決 定。假設有一個共享變量x,線程a執行x=x+1。從上面的描述中可以知道x=x+1并不是一個原子操作,它的執行過程如下:
    1 從主存中讀取變量x副本到工作內存
    2 給x加1
    3 將x加1后的值寫回主 存
    如果另外一個線程b執行x=x-1,執行過程如下:
    1 從主存中讀取變量x副本到工作內存
    2 給x減1
    3 將x減1后的值寫回主存 
    那么顯然,最終的x的值是不可靠的。假設x現在為10,線程a加1,線程b減1,從表面上看,似乎最終x還是為10,但是多線程情況下會有這種情況發生:
    1:線程a從主存讀取x副本到工作內存,工作內存中x值為10
    2:線程b從主存讀取x副本到工作內存,工作內存中x值為10
    3:線程a將工作內存中x加1,工作內存中x值為11
    4:線程a將x提交主存中,主存中x為11
    5:線程b將工作內存中x值減1,工作內存中x值為9
    6:線程b將x提交到中主存中,主存中x為

     

    jvm的內存模型之eden區

    所謂線程的“工作內存”到底是個什么東西?有的人認為是線程的棧,其實這種理解是不正確的。看看JLS(java語言規范)對線程工作 內存的描述,線程的working memory只是cpu的寄存器和高速緩存的抽象描述

          可能 很多人都覺得莫名其妙,說JVM的內存模型,怎么會扯到cpu上去呢?在此,我認為很有必要闡述下,免 得很多人看得不明不白的。先拋開java虛擬機不談,我們都知道,現在的計算機,cpu在計算的時候,并不總是從內存讀取數據,它的數據讀取順序優先級 是:寄存器-高速緩存-內存。線程耗費的是CPU,線程計算的時候,原始的數據來自內存,在計算過程中,有些數據可能被頻繁讀取,這些數據被存儲在寄存器 和高速緩存中,當線程計算完后,這些緩存的數據在適當的時候應該寫回內存。當個多個線程同時讀寫某個內存數據時,就會產生多線程并發問題,涉及到三個特 性:原子性,有序性,可見性。在《線程安全總結》這篇文章中,為了理解方便,我把原子性和有序性統一叫做“多線程執行有序性”。支持多線程的平臺都會面臨 這種問題,運行在多線程平臺上支持多線程的語言應該提供解決該問題的方案。

          synchronized, volatile,鎖機制(如同步塊,就緒隊 列,阻塞隊列)等等。這些方案只是語法層面的,但我們要從本質上去理解它,不能僅僅知道一個 synchronized 可以保證同步就完了。   在這里我說的是jvm的內存模型,是動態的,面向多線程并發的,沿襲JSL的“working memory”的說法,只是不想牽扯到太多底層細節,因為 《線程安全總結》這篇文章意在說明怎樣從語法層面去理解java的線程同步,知道各個關鍵字的使用場 景。

    說說JVM的eden區吧。JVM的內存,被劃分了很多的區域:

    1.程序計數器
    每一個Java線程都有一個程序計數器來用于保存程序執行到當前方法的哪一個指令。
    2.線程棧
    線程的每個方法被執行的時候,都會同時創建一個幀(Frame)用于存儲本地變量表、操作棧、動態鏈接、方法出入口等信息。每一個方法的調用至完成,就意味著一個幀在VM棧中的入棧至出棧的過程。如果線程請求的棧深度大于虛擬機所允許的深度,將拋出StackOverflowError異常;如果VM棧可以動態擴展(VM Spec中允許固定長度的VM棧),當擴展時無法申請到足夠內存則拋出OutOfMemoryError異常。
    3.本地方法棧
    4.堆
    每個線程的棧都是該線程私有的,堆則是所有線程共享的。當我們new一個對象時,該對象就被分配到了堆中。但是堆,并不是一個簡單的概念,堆區又劃分了很多區域,為什么堆劃分成這么多區域,這是為了JVM的內存垃圾收集,似乎越扯越遠了,扯到垃圾收集了,現在的jvm的gc都是按代收集,堆區大致被分為三大塊:新生代,舊生代,持久代(虛擬的);新生代又分為eden區,s0區,s1區。新建一個對象時,基本小的對象,生命周期短的對象都會放在新生代的eden區中,eden區滿時,有一個小范圍的gc(minor gc),整個新生代滿時,會有一個大范圍的gc(major gc),將新生代里的部分對象轉到舊生代里。
    5.方法區 
    其實就是永久代(Permanent Generation),方法區中存放了每個Class的結構信息,包括常量池、字段描述、方法描述等等。VM Space描述中對這個區域的限制非常寬松,除了和Java堆一樣不需要連續的內存,也可以選擇固定大小或者可擴展外,甚至可以選擇不實現垃圾收集。相對來說,垃圾收集行為在這個區域是相對比較少發生的,但并不是某些描述那樣永久代不會發生GC(至 少對當前主流的商業JVM實現來說是如此),這里的GC主要是對常量池的回收和對類的卸載,雖然回收的“成績”一般也比較差強人意,尤其是類卸載,條件相當苛刻。
    6.常量池
     Class文件中除了有類的版本、字段、方法、接口等描述等信息外,還有一項信息是常量表(constant_pool table),用于存放編譯期已可知的常量,這部分內容將在類加載后進入方法區(永久代)存放。但是Java語言并不要求常量一定只有編譯期預置入Class的常量表的內容才能進入方法區常量池,運行期間也可將新內容放入常量池(最典型的String.intern()方法)。

    posted @ 2012-03-01 18:12 ytl 閱讀(983) | 評論 (0)編輯 收藏

    2011年9月24日

    ArrayList
           關于Java中的transient,volatile和strictfp關鍵字 http://www.iteye.com/topic/52957
           (1), ArrayList底層使用Object數據實現, private transient Object[] elementData;且在使用不帶參數的方式實例化時,生成數組默認的長度是10。
          (2),  add方法實現
          public boolean add(E e) {
               //ensureCapacityInternal判斷添加新元素是否需要重新擴大數組的長度,需要則擴否則不
              ensureCapacityInternal(size + 1);  // 此為JDK7調用的方法 JDK5里面使用的ensureCapacity方法
              elementData[size++] = e; //把對象插入數組,同時把數組存儲的數據長度size加1
              return true;
          }
         JDK 7中 ensureCapacityInternal實現
       private void ensureCapacityInternal(int minCapacity) {
            modCount++;修改次數
            // overflow-conscious code
            if (minCapacity - elementData.length > 0)
                grow(minCapacity);//如果需要擴大數組長度
        }
    /**
         * The maximum size of array to allocate. --申請新數組最大長度
         * Some VMs reserve some header words in an array.
         * Attempts to allocate larger arrays may result in
         * OutOfMemoryError: Requested array size exceeds VM limit  --如果申請的數組占用的內心大于JVM的限制拋出異常
         */
        private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;//為什么減去8看注釋第2行
        /**
         * Increases the capacity to ensure that it can hold at least the
         * number of elements specified by the minimum capacity argument.
         *
         * @param minCapacity the desired minimum capacity
         */
        private void grow(int minCapacity) {
            // overflow-conscious code
            int oldCapacity = elementData.length;
            int newCapacity = oldCapacity + (oldCapacity >> 1); //新申請的長度為old的3/2倍同時使用位移運算更高效,JDK5中: (oldCapacity *3)/2+1
            if (newCapacity - minCapacity < 0)  
                newCapacity = minCapacity; 
            if (newCapacity - MAX_ARRAY_SIZE > 0) //你懂的
                newCapacity = hugeCapacity(minCapacity);
            // minCapacity is usually close to size, so this is a win:
            elementData = Arrays.copyOf(elementData, newCapacity);
        }
     //可以申請的最大長度
        private static int hugeCapacity(int minCapacity) { 
            if (minCapacity < 0) // overflow
                throw new OutOfMemoryError();
            return (minCapacity > MAX_ARRAY_SIZE) ?
                Integer.MAX_VALUE :
                MAX_ARRAY_SIZE;
        }



    posted @ 2011-09-24 15:30 ytl| 編輯 收藏

    2011年8月7日

         摘要:   閱讀全文

    posted @ 2011-08-07 11:02 ytl| 編輯 收藏

    2011年5月8日

    Quicksort

    Quicksort is a fast sorting algorithm, which is used not only for educational purposes, but widely applied in practice. On the average, it has O(n log n) complexity, making quicksort suitable for sorting big data volumes. The idea of the algorithm is quite simple and once you realize it, you can write quicksort as fast as bubble sort.

    Algorithm

    The divide-and-conquer strategy is used in quicksort. Below the recursion step is described:
    1. Choose a pivot value. We take the value of the middle element as pivot value, but it can be any value, which is in range of sorted values, even if it doesn't present in the array.
    2. Partition. Rearrange elements in such a way, that all elements which are lesser than the pivot go to the left part of the array and all elements greater than the pivot, go to the right part of the array. Values equal to the pivot can stay in any part of the array. Notice, that array may be divided in non-equal parts.
    3. Sort both parts. Apply quicksort algorithm recursively to the left and the right parts.

    Partition algorithm in detail

    There are two indices i and j and at the very beginning of the partition algorithm i points to the first element in the array andj points to the last one. Then algorithm moves i forward, until an element with value greater or equal to the pivot is found. Index j is moved backward, until an element with value lesser or equal to the pivot is found. If i ≤ j then they are swapped and i steps to the next position (i + 1), j steps to the previous one (j - 1). Algorithm stops, when i becomes greater than j.

    After partition, all values before i-th element are less or equal than the pivot and all values after j-th element are greater or equal to the pivot.

    Example. Sort {1, 12, 5, 26, 7, 14, 3, 7, 2} using quicksort.

    Quicksort example

    Notice, that we show here only the first recursion step, in order not to make example too long. But, in fact, {1, 2, 5, 7, 3} and {14, 7, 26, 12} are sorted then recursively.

    Why does it work?

    On the partition step algorithm divides the array into two parts and every element a from the left part is less or equal than every element b from the right part. Also a and b satisfy a ≤ pivot ≤ b inequality. After completion of the recursion calls both of the parts become sorted and, taking into account arguments stated above, the whole array is sorted.

    Complexity analysis

    On the average quicksort has O(n log n) complexity, but strong proof of this fact is not trivial and not presented here. Still, you can find the proof in [1]. In worst case, quicksort runs O(n2) time, but on the most "practical" data it works just fine and outperforms other O(n log n) sorting algorithms.

    Code snippets

    Java

    int partition(int arr[], int left, int right)

    {

         int i = left;

         int j = right;

         int temp;

        int  pivot = arr[(left+right)>>1];

         while(i<=j){

            while(arr[i]>=pivot){

                i++;

            }

            while(arr[j]<=pivot){

                j--;

           }

           if(i<=j){

               temp = arr[i];

               arr[i] = arr[j];

               arr[j] = temp;

               i++;

               j--;

           }

        }

        return i

    }

     

    void quickSort(int arr[], int left, int right) {

          int index = partition(arr, left, right);

          if(left<index-1){

             quickSort(arr,left,index-1);

          }

          if(index<right){

             quickSort(arr,index,right); 

          }

    }

    python

    def quickSort(L,left,right) {

          i = left

          j = right

          if right-left <=1:

                return L

          pivot = L[(left + right) >>1];

          /* partition */

          while (i <= j) {

                while (L[i] < pivot)

                      i++;

                while (L[j] > pivot)

                      j--;

                if (i <= j) {

                      L[i],L[j] = L[j],L[i]

                      i++;

                      j--;

                }

          };

          /* recursion */

          if (left < j)

                quickSort(Lleftj);

          if (i < right)

                quickSort(Liright);

    }

    posted @ 2011-05-08 14:13 ytl| 編輯 收藏

    Insertion Sort

    Insertion sort belongs to the O(n2) sorting algorithms. Unlike many sorting algorithms with quadratic complexity, it is actually applied in practice for sorting small arrays of data. For instance, it is used to improve quicksort routine. Some sources notice, that people use same algorithm ordering items, for example, hand of cards.

    Algorithm

    Insertion sort algorithm somewhat resembles selection sort. Array is imaginary divided into two parts - sorted one andunsorted one. At the beginning, sorted part contains first element of the array and unsorted one contains the rest. At every step, algorithm takes first element in the unsorted part and inserts it to the right place of the sorted one. Whenunsorted part becomes empty, algorithm stops. Sketchy, insertion sort algorithm step looks like this:

    Insertion sort sketchy, before insertion

    becomes

    Insertion sort sketchy, after insertion

    The idea of the sketch was originaly posted here.

    Let us see an example of insertion sort routine to make the idea of algorithm clearer.

    Example. Sort {7, -5, 2, 16, 4} using insertion sort.

    Insertion sort example

    The ideas of insertion

    The main operation of the algorithm is insertion. The task is to insert a value into the sorted part of the array. Let us see the variants of how we can do it.

    "Sifting down" using swaps

    The simplest way to insert next element into the sorted part is to sift it down, until it occupies correct position. Initially the element stays right after the sorted part. At each step algorithm compares the element with one before it and, if they stay in reversed order, swap them. Let us see an illustration.

    insertion sort, sift down illustration

    This approach writes sifted element to temporary position many times. Next implementation eliminates those unnecessary writes.

    Shifting instead of swapping

    We can modify previous algorithm, so it will write sifted element only to the final correct position. Let us see an illustration.

    insertion sort, shifting illustration

    It is the most commonly used modification of the insertion sort.

    Using binary search

    It is reasonable to use binary search algorithm to find a proper place for insertion. This variant of the insertion sort is calledbinary insertion sort. After position for insertion is found, algorithm shifts the part of the array and inserts the element. This version has lower number of comparisons, but overall average complexity remains O(n2). From a practical point of view this improvement is not very important, because insertion sort is used on quite small data sets.

    Complexity analysis

    Insertion sort's overall complexity is O(n2) on average, regardless of the method of insertion. On the almost sorted arrays insertion sort shows better performance, up to O(n) in case of applying insertion sort to a sorted array. Number of writes is O(n2) on average, but number of comparisons may vary depending on the insertion algorithm. It is O(n2) when shifting or swapping methods are used and O(n log n) for binary insertion sort.

    From the point of view of practical application, an average complexity of the insertion sort is not so important. As it was mentioned above, insertion sort is applied to quite small data sets (from 8 to 12 elements). Therefore, first of all, a "practical performance" should be considered. In practice insertion sort outperforms most of the quadratic sorting algorithms, like selection sort or bubble sort.

    Insertion sort properties

    • adaptive (performance adapts to the initial order of elements);
    • stable (insertion sort retains relative order of the same elements);
    • in-place (requires constant amount of additional space);
    • online (new elements can be added during the sort).

    Code snippets

    We show the idea of insertion with shifts in Java implementation and the idea of insertion using python code snippet.

    Java implementation

    void insertionSort(int[] arr) {

          int i,j,newValue;

          for(i=1;i<arr.length;i++){

               newValue = arr[i];

               j=i;

               while(j>0&&arr[j-1]>newValue){

                   arr[j] = arr[j-1];

                   j--;

               }

               arr[j] = newValue;

    }

    Python implementation

    void insertionSort(L) {

          for i in range(l,len(L)):

                j = i

                newValue = L[i]

                while j > 0 and  L[j - 1] >L[j]:

                     L[j] = L[j - 1]

                      j = j-1

                }

                L[j] = newValue

          }

    }

    posted @ 2011-05-08 12:24 ytl| 編輯 收藏

    2011年5月6日

    Binary search algorithm

    Generally, to find a value in unsorted array, we should look through elements of an array one by one, until searched value is found. In case of searched value is absent from array, we go through all elements. In average, complexity of such an algorithm is proportional to the length of the array.

    Situation changes significantly, when array is sorted. If we know it, random access capability can be utilized very efficientlyto find searched value quick. Cost of searching algorithm reduces to binary logarithm of the array length. For reference, log2(1 000 000) ≈ 20. It means, that in worst case, algorithm makes 20 steps to find a value in sorted array of a million elements or to say, that it doesn't present it the array.

    Algorithm

    Algorithm is quite simple. It can be done either recursively or iteratively:

    1. get the middle element;
    2. if the middle element equals to the searched value, the algorithm stops;
    3. otherwise, two cases are possible:
      • searched value is less, than the middle element. In this case, go to the step 1 for the part of the array, before middle element.
      • searched value is greater, than the middle element. In this case, go to the step 1 for the part of the array, after middle element.
    Now we should define, when iterations should stop. First case is when searched element is found. Second one is when subarray has no elements. In this case, we can conclude, that searched value doesn't present in the array.

    Examples

    Example 1. Find 6 in {-1, 5, 6, 18, 19, 25, 46, 78, 102, 114}.

    Step 1 (middle element is 19 > 6):     -1  5  6  18  19  25  46  78  102  114

    Step 2 (middle element is 5 < 6):      -1  5  6  18  19  25  46  78  102  114

    Step 3 (middle element is 6 == 6):     -1  5  6  18  19  25  46  78  102  114

    Example 2. Find 103 in {-1, 5, 6, 18, 19, 25, 46, 78, 102, 114}.

    Step 1 (middle element is 19 < 103):   -1  5  6  18  19  25  46  78  102  114

    Step 2 (middle element is 78 < 103):   -1  5  6  18  19  25  46  78  102  114

    Step 3 (middle element is 102 < 103):  -1  5  6  18  19  25  46  78  102  114

    Step 4 (middle element is 114 > 103):  -1  5  6  18  19  25  46  78  102  114

    Step 5 (searched value is absent):     -1  5  6  18  19  25  46  78  102  114

    Complexity analysis

    Huge advantage of this algorithm is that it's complexity depends on the array size logarithmically in worst case. In practice it means, that algorithm will do at most log2(n) iterations, which is a very small number even for big arrays. It can be proved very easily. Indeed, on every step the size of the searched part is reduced by half. Algorithm stops, when there are no elements to search in. Therefore, solving following inequality in whole numbers:

    n / 2iterations > 0

    resulting in

    iterations <= log2(n).

    It means, that binary search algorithm time complexity is O(log2(n)).

    Code snippets.

    You can see recursive solution for Java and iterative for python below.

    Java

    int binarySearch(int[] array, int value, int left, int right) {

          if (left > right)

                return -1;

          int middle = left + (right-left) / 2;

          if (array[middle] == value)

                return middle;

          if (array[middle] > value)

                return binarySearch(array, value, left, middle - 1);

          else

                return binarySearch(array, value, middle + 1, right);           

    }

    Python

    def biSearch(L,e,first,last):

          if last - first < 2: return L[first] == e or L[last] == e

          mid = first + (last-first)/2

          if L[mid] ==e: return True

          if L[mid]> e : 

                return biSearch(L,e,first,mid-1)

          return biSearch(L,e,mid+1,last)

          

    posted @ 2011-05-06 18:11 ytl| 編輯 收藏

    Merge sort is an O(n log ncomparison-based sorting algorithm. Most implementations produce a stable sort, meaning that the implementation preserves the input order of equal elements in the sorted output. It is a divide and conquer algorithm. Merge sort was invented by John von Neumann in 1945. A detailed description and analysis of bottom-up mergesort appeared in a report byGoldstine and Neumann as early as 1948
     divide and conquer algorithm: 1, split the problem into several subproblem of the same type. 2,solove independetly. 3 combine those solutions



    Python Implement
      
      def mergeSort(L):
           
             if len(L) < 2 :
                   return  L
             middle = len(L)/2
             left = mergeSort(L[:mddle])
             right = mergeSort(L[middle:])
             together = merge(left,right)
             return together

    posted @ 2011-05-06 17:05 ytl| 編輯 收藏

    Algorithm to merge sorted arrays

    In the article we present an algorithm for merging two sorted arrays. One can learn how to operate with several arrays and master read/write indices. Also, the algorithm has certain applications in practice, for instance in merge sort.

    Merge algorithm

    Assume, that both arrays are sorted in ascending order and we want resulting array to maintain the same order. Algorithm to merge two arrays A[0..m-1] and B[0..n-1] into an array C[0..m+n-1] is as following:

    1. Introduce read-indices ij to traverse arrays A and B, accordingly. Introduce write-index k to store position of the first free cell in the resulting array. By default i = j = k = 0.
    2. At each step: if both indices are in range (i < m and j < n), choose minimum of (A[i], B[j]) and write it toC[k]. Otherwise go to step 4.
    3. Increase k and index of the array, algorithm located minimal value at, by one. Repeat step 2.
    4. Copy the rest values from the array, which index is still in range, to the resulting array.

    Enhancements

    Algorithm could be enhanced in many ways. For instance, it is reasonable to check, if A[m - 1] < B[0] orB[n - 1] < A[0]. In any of those cases, there is no need to do more comparisons. Algorithm could just copy source arrays in the resulting one in the right order. More complicated enhancements may include searching for interleaving parts and run merge algorithm for them only. It could save up much time, when sizes of merged arrays differ in scores of times.

    Complexity analysis

    Merge algorithm's time complexity is O(n + m). Additionally, it requires O(n + m) additional space to store resulting array.

    Code snippets

    Java implementation

    // size of C array must be equal or greater than

    // sum of A and B arrays' sizes

    public void merge(int[] A, int[] B, int[] C) {

          int i,j,k ;

          i = 0;

          j=0;

          k=0;

          m = A.length;

          n = B.length;

          while(i < m && j < n){

              if(A[i]<= B[j]){

                  C[k] = A[i];

                  i++;

              }else{

                  C[k] = B[j];

                  j++;

           }

           k++;

           while(i<m){

             C[k] = A[i]

             i++;

             k++;

          }

          while(j<n){

             C[k] = B[j] 

             j++;

              k++;

     }


    Python  implementation

    def merege(left,right):

        result = []

        i,j = 0

       while i< len(left) and j < len(right):

            if left[i]<= right[j]:

                result.append(left[i])

                i = i + 1

            else:

                result.append(right[j])

                j = j + 1

        while i< len(left):

               result.append(left[i])

               i = i + 1

        while j< len(right):

               result.append(right[j])

               j = j + 1

        return result

      
    MergSort:

    import operator

    def mergeSort(L, compare = operator.lt):
         if len(L) < 2:
              return L[:]
         else:
              middle = int(len(L)/2)
              left = mergeSort(L[:middle], compare)
              right= mergeSort(L[middle:], compare)
              return merge(left, right, compare)

    def merge(left, right, compare):
         result = []
         i, j = 0, 0

         while i < len(left) and j < len(right):
              if compare(left[i], right[j]):
                   result.append(left[i])
                   i += 1
              else:
                    result.append(right[j])
                    j += 1
         while i < len(left):
              result.append(left[i])
              i += 1
         while j < len(right):
              result.append(right[j])
              j += 1
         return result
                   

    posted @ 2011-05-06 16:55 ytl| 編輯 收藏

    Selection Sort

    Selection sort is one of the O(n2) sorting algorithms, which makes it quite inefficient for sorting large data volumes. Selection sort is notable for its programming simplicity and it can over perform other sorts in certain situations (see complexity analysis for more details).

    Algorithm

    The idea of algorithm is quite simple. Array is imaginary divided into two parts - sorted one and unsorted one. At the beginning, sorted part is empty, while unsorted one contains whole arrayAt every step, algorithm finds minimal element in the unsorted part and adds it to the end of the sorted one. When unsorted part becomes empty, algorithmstops.

    When algorithm sorts an array, it swaps first element of unsorted part with minimal element and then it is included to the sorted part. This implementation of selection sort in not stable. In case of linked list is sorted, and, instead of swaps, minimal element is linked to the unsorted part, selection sort is stable.

    Let us see an example of sorting an array to make the idea of selection sort clearer.

    Example. Sort {5, 1, 12, -5, 16, 2, 12, 14} using selection sort.

    Selection sort example

    Complexity analysis

    Selection sort stops, when unsorted part becomes empty. As we know, on every step number of unsorted elements decreased by one. Therefore, selection sort makes n steps (n is number of elements in array) of outer loop, before stop. Every step of outer loop requires finding minimum in unsorted part. Summing up, n + (n - 1) + (n - 2) + ... + 1, results in O(n2) number of comparisons. Number of swaps may vary from zero (in case of sorted array) to n - 1 (in case array was sorted in reversed order), which results in O(n) number of swaps. Overall algorithm complexity is O(n2).

    Fact, that selection sort requires n - 1 number of swaps at most, makes it very efficient in situations, when write operation is significantly more expensive, than read operation.

    Code snippets

    Java

    public void selectionSort(int[] arr) {

          int i, j, minIndex, tmp;

          int n = arr.length;

          for (i = 0; i < n - 1; i++) {

                minIndex = i;

                for (j = i + 1; j < n; j++)

                      if (arr[j] < arr[minIndex])

                            minIndex = j;

                if (minIndex != i) {

                      tmp = arr[i];

                      arr[i] = arr[minIndex];

                      arr[minIndex] = tmp;

                }

          }

    }

    Python

         for i in range(len(L)-1):
              minIndex = i
              minValue = L[i]
              j = i + 1
              while j< len(L):
                   if minValue > L[j]:
                        minIndex = j
                        minValue = L[j]
                   j += 1
              if minIndex != i:
                   temp       = L[i]
                   L[i]       = L[minIndex]
                   L[minIndex] = temp


    posted @ 2011-05-06 16:16 ytl| 編輯 收藏

    主站蜘蛛池模板: 亚洲欧美日韩久久精品| 国产成人精品无码免费看| 成在线人直播免费视频| 国产无遮挡色视频免费观看性色 | 亚洲一级毛片免费看| 亚洲人成电影在线播放| 亚洲人成网站在线播放vr| 亚洲欧洲日韩国产综合在线二区| 亚洲啪啪免费视频| 99亚洲男女激情在线观看| 亚洲天堂2017无码中文| 看Aⅴ免费毛片手机播放| 国产一级高青免费| 日韩中文字幕精品免费一区| 日韩一级视频免费观看| 亚洲午夜久久久影院| 亚洲精品中文字幕无乱码| 亚洲第一成年网站视频| 精品亚洲国产成人av| 日韩a级无码免费视频| 国内精品乱码卡1卡2卡3免费 | 国产yw855.c免费视频| 亚洲精品无码专区在线在线播放| 亚洲国产成人精品久久| 美女视频黄频a免费大全视频| 美女被免费网站视频在线| 永久免费av无码网站yy| 成人免费无码大片a毛片 | 日本免费高清视频| 成人毛片免费网站| 亚洲色成人WWW永久网站| 亚洲视频无码高清在线| 中国一级毛片免费看视频| 免费在线观看的网站| 中文亚洲AV片在线观看不卡| 亚洲AV成人无码天堂| 成人免费av一区二区三区| 成人au免费视频影院| 亚洲成人激情在线| 牛牛在线精品观看免费正| 青青视频观看免费99|